期刊文献+

基于克隆选择算法的人脸特征选择 被引量:2

Feature selection of face recognition based on genetic algorithm
下载PDF
导出
摘要 针对经典PCA算法在人脸特征提取上的局限性,提出了一种基于克隆选择算法的特征选择方法.克隆选择算法的收敛速度快,具有较强的全局搜索能力,可以快速搜索到最有利于分类的特征空间;因此利用克隆选择算法对PCA变换后的特征向量进行选择,可以有效避免PCA只选择人脸轮廓信息,而忽略细节信息的不足,在人脸识别中取得了较好的效果.通过对ORL和Yale人脸库的仿真实验表明,该方法无论在识别率、降维效果还是稳定性方面,性能均优于遗传算法,不但有效降低了特征向量维数,还将人脸识别率提高到91.5%,因此研究该算法具有很强的现实意义. Limitations of classic PCA algorithm in the face feature extraction were illustrated, and a new feature selection method based on colonial selection algorithm was proposed. Colonial selection algorithm enjoys fast convergence and strong global searching capability. It can quickly find out character space that is most beneficial to classification, so colonial selection algorithm is used in feature vector selection after the transformation of PCA, so as to effectively avoid choosing only the outline of face and neglecting the details. Simulation experiments on ORL and Yale face database show that in terms of the recognition rate, the effect of reduced dimension and stability, this new method is superior to genetic algorithm. Therefore, the study of this method is of practical significance.
出处 《应用科技》 CAS 2009年第3期11-14,共4页 Applied Science and Technology
基金 国家自然科学基金资助项目(60672034)
关键词 人脸识别 主成份分析 克隆选择算法 遗传算法 特征选择 face recognition principal component analysis genetic algorithm feature selection
  • 相关文献

参考文献5

二级参考文献14

  • 1孟庆春,贾培发.关于Genetic算法的研究及应用现状[J].清华大学学报(自然科学版),1995,35(5):44-48. 被引量:21
  • 2王煦法.遗传算法及其应用[J].小型微型计算机系统,1995,16(2):59-64. 被引量:37
  • 3彭辉,张长水,荣钢,边肇祺.基于K-L变换的人脸自动识别方法[J].清华大学学报(自然科学版),1997,37(3):67-70. 被引量:69
  • 4Mucciardi A N, Gose E E. A comparison of seven techniques for choosing subsets of pattern recognition propertied[J].IEEE Transactions on Computers,1971,C-20:1023-1031. 被引量:1
  • 5Yang J,Honavar V. Feature subset selection using a genetic algorithm[J].Intelligent Systems,1998,13(2):44-49. 被引量:1
  • 6Raymer M L, Punch W F, Goodman E D,et al.Dimensionality reduction using genetic algorithms[J].IEEE Transactions on Evolutionary Computation,2000,4(2):164-171. 被引量:1
  • 7Kohavi R , John G H. Wrappers for feature subset selection[J].Artificial Intelligence Journal,1997,97(1-2):273-324. 被引量:1
  • 8Haralick R M,Shanmugam K,Dinstein Its'hak.Textural features for image classification[J].IEEE Transactions on Systems Man,and Cybernetics,1973,3(6):610-621. 被引量:1
  • 9邓乃扬 田英杰.数据挖掘中的新方法[M].北京:科学出版社,2004.. 被引量:19
  • 10Vladimir VAPNIK.Universal Learning Technology:Support Vector Machines[J].NEC Journal of Advanced Technology,2005,(2):137~144. 被引量:1

共引文献80

同被引文献24

  • 1任江涛,黄焕宇,孙婧昊,印鉴.基于相关性分析及遗传算法的高维数据特征选择[J].计算机应用,2006,26(6):1403-1405. 被引量:16
  • 2周川,林学訚.基于核函数因素分解模型的表情合成与识别[J].清华大学学报(自然科学版),2006,46(10):1751-1754. 被引量:4
  • 3Yang Yi, Shen Hengtao, Ma Zhigang, et al. 12,1 -norm regu- larized discriminative feature selection for unsupervised learn- ing[ C]//Proceedings of the 22nd international joint confer- ence on artificial intelligence. Menlo Park, CA : AAAI Press, 2011 : 1589-1594. 被引量:1
  • 4Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data[ J ]. Journal of Bioinformatics and Computational Biology ,2005,3 (2) : 185-205. 被引量:1
  • 5Nie Feiping, Huang Heng, Cai Xiao, et al. Efficient and robust feature selection via joint 12,1 -norms minimization [ C 1//Proc of NIPS. Vancouver,Canada: [ s. n. ] ,2010. 被引量:1
  • 6Chartrand R, Yin W. Iteratively reweighted algorithms for com- pressive sensing [ C ]//Proc of 33rd international conference on acoustics,speech,and signal processing. [ s. 1. I : [ s. n. ], 2008:3869-3872. 被引量:1
  • 7Wang Liping, Chen Songcan, Wang Yuanping. A unified algo- rithm for mixed 12,1 -minimizations and its application in fea- ture selection [ J [. Computational Optimization and Applica- tions ,2014,58 (2) :409-421. 被引量:1
  • 8Martinez A M, Benavente R. The AR face database [ R ]. Bar- celona : Pompeu Fabra Univ, 1998. 被引量:1
  • 9Li Z, Yang Y, Liu J, et al. Unsupervised feature selection using nonnegative spectral analysis [ C ]//Proe of twenty-sixth AAAI conference on artificial inteUigence. [ s. 1. ] : AAAI Press, 2012 : 1026-1032. 被引量:1
  • 10Incel O D, Kose M, Ersoy C. A review and taxonomy of activity recognition on mobile phone [ J ]. BioNanoScience, 2013,3 (2) :145-171. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部