摘要
分析了2004年3月13日12:15到12:25UT期间TC-1和Cluster卫星簇的磁通门磁力计(FGM)和电子/电流试验仪(PEACE)的联合观测数据.在此期间,TC-1卫星位于日下点以南的磁层顶附近的磁鞘中,并在12:19UT左右观测到了一个典型的先正后负的磁鞘磁通量传输事件(FTE);向Cluster卫星簇位于北半球日侧高纬磁层顶附近,并于12:23UT左右穿出磁层顶进入磁鞘,且在12:21UT左右也观测到了一个典型的先正后负的磁层FTE.比较分析发现此两个FTE具有类似的磁场结构和等离子体特征,可能是同一个北向运动的FTE先后被TC-1和Cluster卫星观测到.利用Cluster 4颗卫星的多点同时观测数据,采用最小方向微分法和时空微分方法,推断Cluster卫星观测的这个FTE是尺度大小约为1.21 R_e的准二维结构,其运动方向为东北方向,与Cooling模型预测方向基本一致.利用Cooling模型的预测,推算了TC-1卫星在12:19UT观测的FTE的运动速度和尺度,进而得出随着通量管的极向运动,其速度和尺度均有所增加.
This paper analyzed the observations of the FGM and PEACE on TC-1 and Cluster Spacecraft between 12:15 and 12:25UT on 13 March 2004. In this interval, the TC-1 spacecraft located in the magnetosheath southward the sub-solar magnetopause, and observed a standard magnetosheath FTE with a positive to negative bipolar characters at about 12:19 UT. The Cluster spacecraft array was encountering the plasma boundary layer near the high-latitude magnetopause in the northern hemisphere, crossing the magnetopause into the magnetosheath at about 12:23 UT. It also observed a standard magnetospheric FTE with a positive to negative bipolar characters at about 12:21 UT. With the similar features of the magnetic field structures and plasma data, these two FTE might be the same FTE moving through TC-1 and then Cluster. Since all 4 Cluster spacecrafts observed the FTE, the four-spacecraft techniques MDD (Minimum Directional Derivative/Difference) and STD (Spatio-Temporal Difference) were applied to calculate the dimension, motion and scale of these FTE. The inferred northwardly reconnected flux tube for the FTE is shown to move north-east and tailward with a quasi-2D structure and a scale of 1.21 Re. Whilst, the FTE motions are shown to be consistent with the expected motion of reconnected magnetic flux tubes over the surface of the magnetopause, arising from a predominantly low-latitude reconnection site during the prevailing upstream conditions. According to the predictions of the Cooling model, the motion of the FTE observed by TC-1 spacecraft is inferred, which implied that the speed and size of flux tube increase with its poleward moving.
出处
《空间科学学报》
CAS
CSCD
北大核心
2009年第2期166-174,共9页
Chinese Journal of Space Science
基金
国家自然科学基金项目资助(40390154
40236058
40574075)