期刊文献+

面向水下无声推进的形状记忆合金丝驱动柔性鳍单元 被引量:17

Shape Memory Alloy Wire Actuated Flexible Biomimetic Fin for Quiet Underwater Propulsion
下载PDF
导出
摘要 水下无声推进是潜器追求的理想目标,但几乎所有成熟的潜器都应用螺旋桨推进,噪声较大,推进效率随航度变化波动大,限制了潜器的应用。基于大多数鱼类和鳍波动推进时的乌贼的游动基本动作为柔性弯曲这一事实,从软体动物乌贼的鳍结构获得启发,借鉴其肌肉性静水骨骼原理,提出并研制嵌入形状记忆合金丝驱动的仿生柔性鳍单元,对柔性鳍单元进行转角理论分析及水中弯曲、回复试验,研制并试验基于柔性鳍单元的微型机器鱼。柔性鳍单元通过电流驱动,以模块化形式安装,实现身体/尾鳍推进、胸鳍波动推进等功能。柔性鳍单元为动作无噪声,转角大,无相对移动的机械部件,具有足够的输出力,结构简单,隐蔽性好,可实现水下无声仿生推进,在微小型水下机器人上应用具有优势。 Quiet underwater propulsion is an ideal goal of underwater vehicles (UVs). However, almost all mature UVs are propelled by screws. The problems of the screws, such as noise and propulsion efficiency, restrict the application of UVs. It is found that the basic motion of most fish and squid/cuttlefish with fin undulation propulsion is flexible bending, and a shape memory alloy wire actuated flexible biomimetic fin, which can realize flexible bending, is developed. The biomimetic fin gets an idea from the fins musculature of squid/cuttlefish and it is based on the principle of muscular hydrostat. Theorem analysis is conducted to get the bending angle of the biomimetic fin and experiments are carried out in water. A micro robot fish employing the biomimetic fin is developed and it verifies the concept. The electric current driven biomimetic fins can be equipped as modules to realize the body and/or caudal fin propulsion, and pectoral fin undulation propulsion. With the characteristics of quiet actuation, large bending angle, no relative moving mechanical parts, adequate output force, simple structure and good concealing, the flexible biomimetic fin can be applied for quiet propulsion, and it is fit for micro UVs especially.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2009年第2期126-131,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(50775049)
关键词 水下无声推进 微型机器鱼 乌贼鳍 柔性鳍单元 形状记忆合金丝 Quiet underwater propulsion Micro robot fish Squid/cuttlefish fin Flexible biomimetic fin Shape memory alloy wire
  • 相关文献

参考文献12

  • 1TRIANTAFYLLOU M S, TRIANTAFYLLOU G S. An efficient swimming machine[J]. Scientific American, 1995, 272(3): 64-70. 被引量:1
  • 2王田苗,梁建宏.基于理想推进器理论的尾鳍推力与效率估算[J].机械工程学报,2005,41(8):18-23. 被引量:22
  • 3王光明,胡天江,李非,沈林成.长背鳍波动推进游动研究[J].机械工程学报,2006,42(3):88-92. 被引量:23
  • 4GARNER L J, WILSON L N, LAGOUDAS D C, et al. Development of a shape memory alloy actuated biomimetic vehicle[J]. Smart Materials and Structures, 2000, 9(5): 673-683. 被引量:1
  • 5AYERS J, WILBUR C, OLCOTT C. Lamprey robots[C]// International Symposium on Aqua Biomechanisms, 2000, Tokai University, Hiratsuka, Japan. 2000: 1-6. 被引量:1
  • 6SHINJO N, SWAIN G W. Use of a shape memory alloy for the design of an oscillatory propulsion system[J]. IEEE Journal of Oceanic Engineering, 2004, 29(3):750-755. 被引量:1
  • 7GUO Shuxiang, FUKUDA T, ASAKA K. A new type of fish-like underwater microrobot[J]. IEEE/ASME Transactions on Mechatronics, 2003, 8(1): 136-141. 被引量:1
  • 8KIM B, KIM D H, JUNG J, et al. A biomimetic undulatory tadpole robot using ionic polymer-metal composite actuators[J]. Smart Materials and Structures, 2005, 14(6): 1 579-1 585. 被引量:1
  • 9PUNNING A, ANTON M, KRUUSMAA M, et al. A biologically inspired ray-like underwater robot with eleetroactive polymer pectoral fins[C]//International IEEE Conference on Mechatronics and Robotics 2004 (MechRob'04), 2004, Aachen, Germany. IEEE, 2004: 241-245. 被引量:1
  • 10FUKUDA T, KAWAMOTO A, ARAI F, et al. Steering mechanism of underwater micro mobile robot[C]//IEEE International Conference on Robotics and Automation, 1995, Nagoya, Japan. IEEE, 1995: 363-368. 被引量:1

二级参考文献27

  • 1Triantafyllou M S, Triantafyllou G S. An efficient swimming machine. Scientific American, 1995(5): 64~70. 被引量:1
  • 2Anderson J M, Kerrebrock P A. The vorticity control unmanned undersea vehicle(VCUUV)-an autonomous vehicle employing fish swimming propulsion and maneuvering. In: Proc. 10th Int. Symp. Unmanned Untethered Submersible Technology, NH, 1997, 9:189~195. 被引量:1
  • 3Fukuda T. Distributed type of actuators of shape memory alloy and its application to underwater mobile robotic mechanisms. In: Proceedings of the 1990 IEEE International Conference on Robotics and Automation, 1990:1 316~1 321. 被引量:1
  • 4Fukuda T. Mechanism and swimming experiment of micro mobile robot in water. In: Proceedings of the 1994 IEEE Conference on Robotics and Automation, 1994: 814~819. 被引量:1
  • 5Naomi K. Control performance in the horizontal plane of a fish robot with mechanical pectoral fins. Oceanic Engineering, 2000(25): 121~129. 被引量:1
  • 6Naomi K. Application of swimming functions of aquatic animals to autonomous underwater vehicles. In: Oceans Conference Record, 1999, 9:1 418~1 424. 被引量:1
  • 7Naomi K, Tadahiko I. Guidance and control of fish robot with apparatus of pectoral fin motion. In: Proceedings of the International Conference on Robotics and Automation,1998, 5:446~451. 被引量:1
  • 8Guo S X, Fukuda T, Asaka K. Fish-like underwater microrobot with 3 DOF. In: Proceedings of the IEEE International Conference on Robotics and Automation, 2002(1): 738~743. 被引量:1
  • 9Guo S X, Fukuda T, Oguro K. Development of an artificial fish microrobot. In: Proceedings of the International Symposium on Micro Machine and Human Science, 1999,11: 35~140. 被引量:1
  • 10Guo S X, Sugimoto K, Hata S. A new type of underwater fish-like microrobot. In: Proceedings of the International Conference on Intelligent Robots and Systems, 2000(2):867~872. 被引量:1

共引文献42

同被引文献258

引证文献17

二级引证文献289

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部