期刊文献+

基于头发信息的性别分类 被引量:4

Gender Classification Using Hair Features
下载PDF
导出
摘要 性别分类是指根据人脸部分的图像判别其性别的模式识别问题。探讨使用头发信息作为特征进行基于人脸图像的性别分类,提出了一种检测正面人脸图像中头发区域的方法,定义了6种头发特征并且提出了相应的特征提取方法。通过在两个人脸库上的对比实验,发现相对于特征脸(PCA)、Fisher脸(LDA)仅仅作用于人脸内部的特征提取方法,使用头发作为特征能使性别分类的平均准确率提高2.7%~8.2%。该实验结果说明了头发特征对于性别分类的重要性。 Gender Classification refers to judge people's gender based on their facial images. This paper discusses how to use hair features to solve gender classification problems and proposes a method for detecting hair area on the front view facial image. It defines six different hair features to represent hair and introduces the corresponding approaches to calculate them. The proposed hair features are compared with the traditional Eigen - Face (PCA) and Fisher - Face (LDA) features on two face image databases. Experimental result indicates that the proposed hair features are superior to both Eigen - Face (PCA) and Fisher - Face (LDA) features and obtain 2. 7% to 8.2% accuracy improvements on the average. This demonstrates that hair features are of great importance to gender classification.
出处 《计算机仿真》 CSCD 北大核心 2009年第2期212-216,共5页 Computer Simulation
基金 国家自然科学基金(60473040)
关键词 性别分类 头发特征 支持向量机 特征脸 Gender classification Hair feature SVM Eigen - face
  • 相关文献

参考文献11

  • 1P Viola, M Jones. Rapid Object Detection using a Boosted Cascade of Simple Features[ J]. Computer Vision and Pattern Recognition, Hawaii, 2001. 被引量:1
  • 2D Wright, B Sladden. An own gender bias and the importance of hair in face recognition [ J ]. Acta Psychologica, 2003, 114 : 101 -114. 被引量:1
  • 3B Moghaddam, M Y Yang. Gender Classifi - cation with Support Vector Machines[ J]. IEEE Transactions Pattern Analysis and Machine Intelligence, 2002, 24 : 707 - 711. 被引量:1
  • 4H C Lima, B L Lu. Multi - view Gender Classification Using Local Binary Patterns and Support Vector Machines [ C ]. Proceedings of International Symposium on Neural Networks, 2006, LNCS 3972 : 202 -- 209. 被引量:1
  • 5Y Yacoob, L Davis. Detection, Analysis and Matching of Hair [ C ]. International Conference on Computer Vision, Warsaw, 2004. 被引量:1
  • 6L Farakas. Anthropometry of the head and face 2ed Edition[ M]. New York; Lippincott Williams & Wilkins, 1994. 被引量:1
  • 7J T Kajiya, T L Kay. Rendering fur with three dimensional textures [ J]. Computor Graphics, 1989, 23 (3) :271 - 280. 被引量:1
  • 8B S Manjunath, W Y Ma. Texture Features for Browsing and Retrieval of Image Data[J]. IEEE Transactions Pattern Analysis and Machine Intelligence, 1996, 18:837 842. 被引量:1
  • 9A Martinez, R Benavente. The AR- face Database [ M ]. CVC Technical Repoet#24, Purdue University, 1998. 被引量:1
  • 10P Belhumeur, J Hespanha and D Kriegman. Eigenfaces vs. Fisherfaces: Recognition using Class Specific Linear Projection [ J ]. IEEE Transactions Pattern Analysis and Machine Intelligence, 1997, 19:711 -720. 被引量:1

同被引文献22

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部