摘要
考虑一类高阶微分方程ax(2n)(t)+cx(′t)+h(x(′t))x(t)+g[x(t-τ)]=p(t)利用重合度理论,获得了此类方程至少存在一个T-周期解的充分条件.
A class of high order differential equation is considered as follows ax^(2n)(t)+cx′(t)+h(x′(t))x(t)+g[x(t-τ]=p(t) By using the theory of coincidence degree, a sufficient condition of existence at least one T - periodic solution is obtained.
出处
《贵州师范大学学报(自然科学版)》
CAS
2009年第1期44-45,71,共3页
Journal of Guizhou Normal University:Natural Sciences
关键词
高阶微分方程
周期解
重合度
high order differential equation
periodic solution
coincidence degree