期刊文献+

Deep Structure and Dynamics of Passive Continental Margin from Shelf to Ocean of the Northern South China Sea 被引量:6

Deep Structure and Dynamics of Passive Continental Margin from Shelf to Ocean of the Northern South China Sea
原文传递
导出
摘要 To study the deep dynamic mechanism leading to the difference in rifting pattern and basin structure from shelf to oceanic basin in passive continental margin, we constructed long geological sections across the shelf, slope and oceanic basin using new seismic data. Integrated gravity-magnetic inversion and interpretation of these sections were made with the advanced dissection method. Results show that the basement composition changes from intermediate-acid intrusive rocks in the shelf to intermediate-basic rocks in the slope. The Moho surface shoals gradually from 31 km in the shelf to 22.5 km in the uplift and then 19 km in the slope and finally to 13 km in the oceanic basin. The crust thickness also decreases gradually from 30 km in the northern fault belt to 9 km in the oceanic basin. The crustal stretching factor increases from the shelf toward the oceanic basin, with the strongest extension under the sags and the oceanic basin. The intensity of mantle upwelling controlled the style of basin structures from shelf to oceanic basin. In the Zhu 1 depression on the shelf, the crust is nearly normal, the brittle and cold upper crust mainly controlled the fault development; so the combinative grabens with single symmetric graben are characteristic. In the slope, the crust thinned with a large stretching factor, affected by the mantle upwelling. The ductile deformation controlled the faults, so there developed an asymmetric complex graben in the Baiyun (白云) sag. To study the deep dynamic mechanism leading to the difference in rifting pattern and basin structure from shelf to oceanic basin in passive continental margin, we constructed long geological sections across the shelf, slope and oceanic basin using new seismic data. Integrated gravity-magnetic inversion and interpretation of these sections were made with the advanced dissection method. Results show that the basement composition changes from intermediate-acid intrusive rocks in the shelf to intermediate-basic rocks in the slope. The Moho surface shoals gradually from 31 km in the shelf to 22.5 km in the uplift and then 19 km in the slope and finally to 13 km in the oceanic basin. The crust thickness also decreases gradually from 30 km in the northern fault belt to 9 km in the oceanic basin. The crustal stretching factor increases from the shelf toward the oceanic basin, with the strongest extension under the sags and the oceanic basin. The intensity of mantle upwelling controlled the style of basin structures from shelf to oceanic basin. In the Zhu 1 depression on the shelf, the crust is nearly normal, the brittle and cold upper crust mainly controlled the fault development; so the combinative grabens with single symmetric graben are characteristic. In the slope, the crust thinned with a large stretching factor, affected by the mantle upwelling. The ductile deformation controlled the faults, so there developed an asymmetric complex graben in the Baiyun (白云) sag.
出处 《Journal of China University of Geosciences》 SCIE CSCD 2009年第1期38-48,共11页 中国地质大学学报(英文版)
基金 supported by the National Natural Science Foundation of China (No. 40238060)
关键词 deep structure DYNAMICS passive margin geophysical inversion northern South China Sea. deep structure, dynamics, passive margin, geophysical inversion, northern South China Sea.
  • 相关文献

参考文献8

二级参考文献75

共引文献281

同被引文献118

引证文献6

二级引证文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部