摘要
文章讨论了边值问题:{-u"=ω(t)f(t,u(t)),u(0)=u(1),u′(0)-u′(1)=u(1/2).当ω(t),f(t,u)满足适当的条件时,根据推广的Leggett-Williams三解定理,得到了这类边值问题三解存在的充分条件,改进了相关文献的结论.
The existence of triple positive solutions of the second order three-point boundary value problem {-u″=w(t)f(t,u(t)),u(0)=u(1),u′(0)-u′(1)=u(1/2),} is discussed. We give theexsistence of triple symmetric positive solutions by applying the generalization of Leggett- Williams three-solutions. The results of the literature are developed and extended.
出处
《太原师范学院学报(自然科学版)》
2008年第4期8-11,共4页
Journal of Taiyuan Normal University:Natural Science Edition
基金
山西省自然科学基金资助(20007011012)
关键词
锥
三解定理
对称正解
cone
three-solutions
symmetric positive solution