期刊文献+

Periodic Solutions for the Higher Order Differential Equations with Multiple Delays

Periodic Solutions for the Higher Order Differential Equations with Multiple Delays
下载PDF
导出
摘要 By Fourier analysis techniques and Schauder fixed point theorem, we study the existence of periodic solutions for a class of even order differential equations with multiple delays. The result obtained is a generalization of the results developed by W. Layton to the case of multiple delays. By Fourier analysis techniques and Schauder fixed point theorem, we study the existence of periodic solutions for a class of even order differential equations with multiple delays. The result obtained is a generalization of the results developed by W. Layton to the case of multiple delays.
作者 梁心 从福仲
出处 《Northeastern Mathematical Journal》 CSCD 2008年第6期558-564,共7页 东北数学(英文版)
基金 The second author partially supported by NSFC (10571179, 10871203) Grant Programfor New Century Excellent Talents in University of Ministry of Eduction of China
关键词 (2k)th-order differential equation multiple delay periodic solution Schauder fixed point theorem (2k)th-order differential equation, multiple delay, periodic solution, Schauder fixed point theorem
  • 相关文献

参考文献10

  • 1Iannacci,R.and Nkashama,M.N.,On periodic solutions of forced second order differential equations with deviating arguments,Lecture Notes in Math.,1151(1984),224-232. 被引量:1
  • 2Layton,W.,Periodic solutions of nonlinear delay equations,J.Math.Anal.Appl.,77(1980),198-204. 被引量:1
  • 3Cong,F.Z.,Periodic solutions for 2kth order ordinary differential equations with nonresonance,Nonlinear Anal.,32(1997),787-793. 被引量:1
  • 4Cong,F.Z.,Huang Q.D.and Shi,S.Y.,Existence and uniqueness of periodic solutions for (2n+1)th-order differential equations,J.Math.Anal.Appl.,241(2000),1-9. 被引量:1
  • 5Lazer,A.C.,Application of lemma on bilinear forms to a problem in nonlinear oscillations,Proc.Amer.Math.Soc.,33(1972),89-94. 被引量:1
  • 6Li,W.,Periodic solutions for 2kth order ordinary differential equation with resonance,J.Math.Anal.Appl.,259(2001),157-167. 被引量:1
  • 7Li,Y.and Wang,H.Z.,Periodic solutions of high order Duffing equations,Appl.Math.J.Chinese Univ.,6(1991),407-412. 被引量:1
  • 8Liu,B.G.and Huang,L.H.,Periodic solutions for nonlinear nth order differential equations with delays,J.Math.Anal.Appl.,313(2006),700-716. 被引量:1
  • 9Lu,S.and Ge,W.,Periodic solutions for a kind of Lienard equations with deviating arguments,J.Math.Anal.Appl.,249(2004),213-243. 被引量:1
  • 10Krasnosel'skii,M.A.,Topological Methods in the Theory of Nonlinear Integral Equations,Macmillan Co.,New York,1964. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部