期刊文献+

基于多目标遗传算法和多属性决策的水轮机PID控制器参数整定 被引量:3

PID Controller Parameters Setting in Hydraulic Turbine Based on Multiobjective Optimization and Multi-attribute Decision
下载PDF
导出
摘要 提出了一种基于多目标遗传算法和多属性决策的PID参数设计方法,综合考虑系统超调量、稳定时间和ITAE指标,采用多目标遗传算法求出Pareto最优解。由这些Pareto最优解构成决策矩阵,使用客观赋权的信息熵法对最优解的属性进行权值计算,然后采用逼近理想解的排序方法进行多属性决策研究,对Pareto最优解给出排序。计算了一个水轮机控制的数值算例,结果表明所设计的PID性能优异,适合工程实际应用。 The tuning of PID controller parameters is the most important task in PID design process. One new tuning method was present for PID parameters based on multiobjective optimization technique. In the first stage, Multiobjective Optimization Genetic Algorithm (MOGA) was employed to approximate the set of Pareto solution through an evolutionary optimization process. In the subsequent stage, a multi-attribute decision making (MADM) approach was adopted to rank these solutions from best to worst and to determine the best solution in a deterministic environment with a single decision maker. A PID design example for hydraulic turbine was conducted to illustrate the analysis process in present study. The ranking of Pareto solution was based on entropy weight and TOPSIS method.
作者 李学斌
出处 《电力科学与工程》 2009年第2期45-48,共4页 Electric Power Science and Engineering
关键词 水轮机PID调节器 遗传算法 多目标优化 多属性决策 排序法 hydraulic turbine PID controller genetic algorithm multiobjective optimization multi-attribute decision making TOPSIS
  • 相关文献

参考文献9

  • 1马建伟,李银伢著..满意PID控制设计理论与方法[M].北京:科学出版社,2007:210.
  • 2周宝林,朱建跃,蔡宁生,向文国.过程控制系统中PID控制器参数优化的研究[J].能源技术,2001,22(5):194-197. 被引量:20
  • 3薛定宇著..控制系统计算机辅助设计 MATLAB语言及应用[M].北京:清华大学出版社,1996:375.
  • 4崔逊学著..多目标进化算法及其应用[M].北京:国防工业出版社,2006:331.
  • 5徐玖平,吴巍编著..多属性决策的理论与方法[M].北京:清华大学出版社,2006:372.
  • 6Fonseca C M, Fleming P J. Genetic algorithms for multi- objective optimization: Formulation, discussion and generalization [C]. Proceedings of Sth International Conference on Genetic Algorithms, San Mateo, California, 1993. 被引量:1
  • 7Hwang C L, Yoon K. Multiple attribute decision making- methods and applications: A state-of-art Survey [M]. New York: Spfinger-Verlag, 1981. 被引量:1
  • 8孙美凤,张俊红,沈祖诒.基于改进遗传算法的水轮机PID调速器参数优化[J].中国农村水利水电,2006(12):125-127. 被引量:1
  • 9沈祖诒.水轮机调节系统分析[M].北京:水利电力出版社,1990. 被引量:5

二级参考文献20

  • 1NirwanAnsari EdwinHou.用于最优化的计算智能[M].北京:清华大学出版社,1999.. 被引量:4
  • 2Astrom KJ, Witternmark B. Adaptive Control[M].Addison-Wesley Publishijng Company, 1992. 被引量:1
  • 3王锦标,方崇智.过程计算机控制[M].清华大学出版社,1996. 被引量:1
  • 4Howell MN, Best MC. On-line PID tuning for engine idle-speed control using continuous action reinforcement learning automata [J]. Control Engineering Practice, 2000,8:147- 154. 被引量:1
  • 5Joao MG Lima, António E Ruano. Neuro-genetic PID autotuning: time invariant case[J]. Mathematics and Computers in Simulation, 2000,51:287-300. 被引量:1
  • 6Goldberg D E.Genetic Algorithms In Search,Optimization And Machine Learning Addison,Wesley,Reading,MA,1989. 被引量:1
  • 7T Stein,Frequency Control under Isolated Network Conditions,Water Power,1970. 被引量:1
  • 8S Tsutsui,D E Gokdberg,Search Space Goundary Extension Method in Real-Coded Genetic Algorithms[J].Journal of Information Sciences,2001,3-4:229-247. 被引量:1
  • 9沈祖诒.水轮机调节[M].第3版.北京:中国水利水电出版社,1996. 被引量:1
  • 10沈祖诒.水轮机调节系统分析[M].北京:水利电力出版社,1990. 被引量:5

共引文献23

同被引文献53

  • 1孟安波,叶鲁卿,殷豪,梁宏柱,傅闯,程远楚.遗传算法在水电机组调速器PID参数优化中的应用[J].控制理论与应用,2004,21(3):398-404. 被引量:20
  • 2过增元.换热器中的场协同原则及其应用[J].机械工程学报,2003,39(12):1-9. 被引量:113
  • 3李昌隆,程鹏,陈晓波,柴旭东.按区域惩罚划分的并行多目标遗传算法[J].北京航空航天大学学报,2005,31(11):1232-1236. 被引量:4
  • 4徐玖平,吴魏.多属性决策的理论与方法[M].北京:清华大学出版社,2007. 被引量:19
  • 5Lansberry J E,Wozniak L. Adaptive hydrogenerator governor tuning with a genetic algorithm[J].IEEE Transactions on Energy Conversion, 1994, 9(1): 179-185. 被引量:1
  • 6Wolpert D H,Macready W G. No free lunch theorems for optimization[J].IEEE Transactions on Evolutionary Computation . 1997(1): 67-82. 被引量:1
  • 7AstromK, Panagopoulso H, Hagglund T. Design of PI controllers based on non-convex optimization [J]. Automatica, 1998,34(5): 585-601. 被引量:1
  • 8Fonseca C M,Fleming PJ. An overview of evolutionary algorithms in multi-objective optimization [J]. Evolutionary Computation, 1995(3): 1-16. 被引量:1
  • 9van Veldhuizenn D A,Zydallis J B,Lamont G B. Considerations in engineering parallel multi-objective evolutionary algorithms[J].IEEE Transactions on Evolutionary Computation, 2003,7(2): 144-173. 被引量:1
  • 10JaimsAL,Coello C A. MRMOGA: parallel evolutionarymulti-objective optimization using multiple resolutions [C]//Proceedings of IEEE Congress on Evolutionary Computation. Edinburgh, UK: IEEE,2005: 2294-2301. 被引量:1

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部