期刊文献+

遗传优化的SVR在钢材力学性能预报中的应用 被引量:2

GA-based on SVR Method in Prediction of Mechanical Property of Steel Materials
下载PDF
导出
摘要 提出了基于支持向量回归的钢材力学性能建模方法,采用遗传算法优化支持向量回归模型的参数,避免了参数选择的盲目性,使得支持向量回归模型的预测性能有了显著提高。将此方法应用于实际钢厂的钢材力学性能预报中,模型的训练与验证数据都来自于实际的过程,结果表明采用遗传优化的支持向量回归模型对钢材力学性能具有很好的预估性能。 The prediction of the Mechanical Property of the steels was discussed based on Support Vector Regression (SVR), and genetic algorithms were introduced to optimize the parameters of SVR model, which could avoid the blindness when defining the parameters to improve the prediction capability greatly. The method is applied to the Prediction of Mechanical Property of Steel Materials, and training data of the model are all based on the actual process. Result shows that SVR model optimized by genetic algorithms is highly beneficial to the estimate of Mechanical Property of Steel Materials.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第4期1192-1194,共3页 Journal of System Simulation
基金 北京市教育委员会重点学科共建项目资助(XK100080537)
关键词 力学性能 支持向量回归 遗传算法 参数优化 mechanical property support vector regression genetic algorithm parameters optimization
  • 相关文献

参考文献7

二级参考文献48

  • 1王殿辉,刘振宇,王国栋,张强,姜洪生,王洪水.利用神经网络预测热轧板带力学性能[J].钢铁,1995,30(1):28-31. 被引量:27
  • 2王铁,陈进.BP 算法中学习率及形状因子对学习速度的综合影响[J].上海交通大学学报,1997,31(3):109-112. 被引量:17
  • 3王国栋 等.人工智能在轧钢中的应用与性能预报[J].钢铁,2000,35:25-25. 被引量:8
  • 4刘孝荣.利用神经网络预报气瓶钢的性能:硕士学位论文[M].沈阳:东北大学,1999.. 被引量:1
  • 5刘振宇.C-Mn钢热轧板带组织性能预测模型的开发及在生产中的应用:博士学位论文[M].沈阳:东北大学,1995.. 被引量:1
  • 6Vapnik V N. Statistical learning theory[M]. New York, 1998. 被引量:1
  • 7Scholkoph B, Smola A J, Bartlett P L. New support vectoral gorithms[J]. Neural Computation, 2000, 12:1207-1245. 被引量:1
  • 8Suykens J A K, Branbanter J K, Lukas L, et al. Weighted least squares support vector machines: robustness and spare approximation [J]. Neurocomputing, 2002, 48(1): 85-105. 被引量:1
  • 9Lin C-F, Wang S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2): 464-471. 被引量:1
  • 10Tay F E H, Cao L J. Modified support vector machines in financial time series forecasting[J]. Neurocomputing, 2002, 48: 847-861. 被引量:1

共引文献202

同被引文献15

  • 1董玉林,夏尊铨,杨慎恭.支持向量机中一种参数优化选取方法[J].运筹与管理,2007,16(3):61-65. 被引量:4
  • 2李明树,何梅,杨达,舒风笛,王青.软件成本估算方法及应用[J].软件学报,2007,18(4):775-795. 被引量:66
  • 3Maxwell K, Wassenhove L V, Dutla S. Performance evaluation of general and company specific models in software development eflbrt estimation [ J ]. Management Science, 1999, 45 (6) : 787- 803. 被引量:1
  • 4Bannerman P L. Risk and risk management in software projects: a reassessment[ J]. Journal of Systems and Software, 2008, 81 (12) : 2118-2133. 被引量:1
  • 5Jorgensen M, Shepperd M. A systematic review of software development cost estimation studies [ J ]. IEEE Transactions on Software Engineering, 2007, 33 ( 1 ) : 33-53. 被引量:1
  • 6Heiat A. Comparison of artificial neural network and regression models for estimating software development effort[ J]. Information and Software Technology, 2002, 44(15) : 911-922. 被引量:1
  • 7Sentas P, et al. Software productivity and effort prediction with ordinal regression[ J]. Information and Software Technology, 2005, 47(1): 17-29. 被引量:1
  • 8Kumara K V, et al. Software development cost estinaation using wavelet neural networks[ J]. Journal of Systems and Software, 2008, 81(11): 1853-1867. 被引量:1
  • 9Huang S J, Chiu N H. Applying fuzzy neural network to estimate software development effort[ J]. Applied Intelligence, 2009, 30(2) : 73-83. 被引量:1
  • 10Oliveira A L I. Estimation of software project effort with support vector regression[ J ]. Neurocomputing, 2006, 69( 13 - 15) : 1749-1753. 被引量:1

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部