期刊文献+

基于距离的关联规则相关性分析优化方法 被引量:3

Distance-based optimization approach for correlation analysis of associ- ation rule mining
下载PDF
导出
摘要 关联规则挖掘常常会产生大量的规则,这使得用户分析和利用这些规则变得十分困难。为了帮助用户做探索式分析,提出了一种基于距离的相关性关联规则优化方法,该方法从数学分析关联规则相关性概念公式的值的特点出发,通过根据关联规则结构上的相关性差别来挖掘出包括正负两种关联规则在内的更多潜在的相关规则,实验结果表明该方法有效且可靠。 A common problem in association rule mining is that a large number of rules are often generated from database.It makes users difficult to analyze and use these rules.To facilitated exploratory analysis,a distance-based optimization approach is used for correlation analysis of association rule mining.The approach mathematically analyzes the value of correlation formulation between correlation rules.Positive and negative rules,as well as other rules can be distinguished and extracted by analyzing the difference of correlation rules.The experiments demonstrate that the proposed approach is effective and credible.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第7期138-140,149,共4页 Computer Engineering and Applications
基金 国家部委基金资助项目 航空科技创新基金(No.08E53003) 西北工业大学种子基金(No.200855)
关键词 关联规则 相关性 距离 数据挖掘 association rule correlation distance data mining
  • 相关文献

参考文献7

二级参考文献24

  • 1董祥军,王淑静,宋瀚涛.基于两级支持度的正、负关联规则挖掘[J].计算机工程,2005,31(10):16-18. 被引量:19
  • 2Brin S, Motwani R, Silverstein C. Beyond Market: Generalizing Association Rules to Correlations. In: Processing of the ACM SIGMOD Conference, 1997:265-276 被引量:1
  • 3Savasere A, Omiecinski E,Navathe S. Mining for Strong Negative Associations in a Large Database of Customer Transaction. In:Proceedings of the 1998 International Conference on Data Engineering, 1998: 494-502 被引量:1
  • 4Wu X, Zhang C, Zhang S. Mining Both Positive and Negative Association Rules. In: Proceedings of the 19th ICML-2002, 2002:658-665 被引量:1
  • 5Zhang C, Zhang S. Association Rule Mining. LNAI 2307,Springer-Verlag, Berlin Heidelberg, 2002:47-84 被引量:1
  • 6Liu B, Hsu W, Ma Y. Pruning and Summarizing the Discovered Associations. In Proc. of the Fifth Int'l Conference on Knowledge Discovery and Data Mining, San Diego, CA, 1999-08:125-134 被引量:1
  • 7Brin S, Motwani R, Silverstein C. Beyond market basket: generalizing association rules to correlations [C]. In: Proc. 1997 ACM-SIGMOD Int. Conf. Management of Data, Tucson, AZ,1997, 265-276. 被引量:1
  • 8Ester M, Kriegel H-P, Sander J et al. A density-based algorithm for discovering clusters in large spatial databases withnoise[C]. In: Proc. 1996 Int. Conf. Knowledge Discovery and Data Mining,Portland, Oregon, 1996, 226-231. 被引量:1
  • 9Srikant R, Vu Q, Agrawal R. Mining association rules with item constraints[C]. In: Proc. 1997 Int. Conf. Knowledge Discovery in Databases and Data Mining, Newport Beach, California, 1997,67-73. 被引量:1
  • 10Ng R, Lakshmanan L V S, Han Jet al. Exploratory mining and pruning optimizations of constrained associations rules[C]. In:Proc. 1998 ACM-SIGMOD Int. Conf. Management of Data,Seattle, WA, 1998,13-24. 被引量:1

共引文献45

同被引文献28

  • 1徐亨成,陈璞,冯春晓.航空维修人因失误分析及控制[J].航空维修与工程,2005(3):24-26. 被引量:11
  • 2韦素云,吉根林,曲维光.关联规则的冗余删除与聚类[J].小型微型计算机系统,2006,27(1):110-113. 被引量:15
  • 3贺志.关联规则优化方法的研究[D].北京交通大学,2006. 被引量:2
  • 4Liu B, Hsu W, Chen S, et al. Analyzing the subjective inter?estingness of association rules[J]. Intelligent Systems and their Applications,2000,15(5) :47 -55. 被引量:1
  • 5Piatesky-Shapiro G. Discovery, analysis, and presentation of strong rules[M] IIPiatesky-Shapiro G, Frawley W. Knowl?edge Discovery in Databases. Cambridge: MIT Press, 1991: 229 -248. 被引量:1
  • 6Hoschka P, Klosgen W. A support system for interpreting statistical data[M] IIPiatetsky-Shapiro G, Frawley WJ. Knowledge Discovery in Database. Cambridge: MIT Press, 1991 :120 -127. 被引量:1
  • 7Piatetsky-Shapiro G, Matheus CJ. The interestingness of de?viations[M] IIFayyad V M, Uthurusamy R. Knowledge Dis?covery in Databases. Seattle:AAAI Press, 1994:25 -36. 被引量:1
  • 8HanJ W, Kamber M. Data mining-concepts and techniques[M].范明,孟小峰,译.北京:机械工业出版社,2001:149~184. 被引量:1
  • 9Klemettinen M, Mannila H, Ronkainen, et al. Finding inter?esting ,rules from large sets of discovered association rules[C] I I Adam N R, Bhargava B K, Yesha Y. CIKM ' 94 Pro?ceedings of the Third International Conference on Informa?tion and Knowledge Management. New York: ACM, 1994: 401 -407. 被引量:1
  • 10Srikant R, Agrawal R. Mining generalized association rules[C] II Dayal V, Gray P M D, Nishio S. Proceedings of the 21st International Conference on Very Large Databases. 1995 :407 -419. 被引量:1

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部