期刊文献+

基于伪F统计FAMC算法的基因表达数据分析 被引量:3

Gene Expression Data Analysis of FAMC Algorithm Based on Pseudo F-statistics
下载PDF
导出
摘要 基因芯片技术在给人类带来巨大机遇的同时也带来一些挑战。针对基因表达数据的海量性,以及基因类属的不确定性等问题,提出了一种基于伪F统计量(PFS)的模糊属性均值聚类FAMC(fuzzy attribute c-means cluste-ring)算法,并就模糊参数m的确定问题提出了有效的解决方法。最后将其在标准的基因表达数据上进行测试分析,取得了较优的聚类结果。 Gene chip technology not only brings the huge opportunity to the humanity but also brings some challenges simultaneously. In view of gene expression data's magnanimous, uncertainty about the gene class and so on, this article proposed one kind fuzzy attribute c-means clustering algorithm based on Pseudo F-statistics, and proposed an effective solution for defining the fuzzy parameter m. Finally carried on it in the standard gene expression data for testing analysis, obtained superior cluster results.
出处 《计算机科学》 CSCD 北大核心 2009年第3期153-155,共3页 Computer Science
基金 国家自然科学基金(60671025 60474065)资助
关键词 基因表达数据 FAMC算法 稳态函数 伪F-统计 Gene expression data, FAMC algorithm, Stable function, Pseudo F-statistics
  • 相关文献

参考文献8

二级参考文献18

  • 1Zadeh L A. Fuzzy sets[J]. Inf Control, 1965, 8: 338-353. 被引量:1
  • 2Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. Plenum, New York, 1981. 被引量:1
  • 3Dun J C. A fuzzy relative of the ISODATA process and it's use in detecting compact, well-separated clusters[J]. J Cybernet, 1974, 3: 32-57. 被引量:1
  • 4Duda R O, Hawt P E. Pattern Classification and Scene Analysis[M]. Wiley, New York, 1973. 被引量:1
  • 5Jain A L, Bubes R C. Algorithm for Clustering Data[M]. Pretice-Hall, Englewood Cliffs, N J, 1988. 被引量:1
  • 6Kaufiman L, Rousseeuw P J. Finding Groups in Data, Introduction to Cluster AnaIysis[M]. Wiley, New York,1990. 被引量:1
  • 7程乾生,北京大学学报,1997年,33卷,1期,12页 被引量:1
  • 8程乾生,第五届全国信号处理学术会议论文集,1994年 被引量:1
  • 9程乾生,信号数字处理的数学原理,1993年 被引量:1
  • 10程乾生,Proceedings of International Conference on Signal Processing,1990年,123页 被引量:1

共引文献182

同被引文献26

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部