期刊文献+

一种基于几何含义的B样条小波分解重构简易算法 被引量:3

A simple algorithm for B-spline wavelet decomposition and reconstruction based on geometrical meanings
下载PDF
导出
摘要 由于B样条基函数及其对应的小波不具有平移正交性,因而不能用现有的Mallat快速算法进行小波变换。文中在分析B样条小波分解重构思想的基础上,着重研究了B样条基函数在不同尺度下伸缩平移系之间的内在联系,用清晰的几何含义描述了重构矩阵的求解过程。该算法概念清晰,计算简单,结果稳定。最后用该算法给出了一条复杂曲线分解重构的实例。 On account of the B-spline basic function and its corresponding wavelets have no translational orthogonality; therefore it is impossible to carrying out wavelet transformation by the use of the existing Mallat rapid algorithm. On the basis of analyzing the thought of B-spline wavelet decomposition and reconstruction this paper emphatically studied the inherent relationship among the sys- tems of stretching drawing-back and translation of B-spline basic function under different scales, the solving process of reconstructed matrix was described by the use of clear geometric meanings. This algorithm is distinct in concept, simple in caleulation and stable on the result. Finally a living example was presented on decomposition and reconstruction of a complex curve by the use of this algorithm.
出处 《机械设计》 CSCD 北大核心 2009年第2期16-19,共4页 Journal of Machine Design
关键词 小波 B样条曲线 多分辨分析 分解重构 计算机图形学 wavelet B-spline curve multi-resolution analysis decomposition and reconstruction computer graphics
  • 相关文献

参考文献5

  • 1Quak E, Weyrich N. Decomposition and reconstruction algorithms for spline wavelets on a bounded interal[J]. Applied and Computional Harmonic Analysis, 1994,1 ( 3 ) :217 - 231. 被引量:1
  • 2Adam Finkelstein, David H Salesin. Multire-solution curves [C]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Orlando, Florida, 1994:261-268. 被引量:1
  • 3Eric J Stollnitz, Tony D DeRose, David H Salesin. Wavelets for computer graphics: a primer, part2 [J]. IEEE Computer Graphics and Applications, 1995,15 (4) :75 - 84. 被引量:1
  • 4朱心雄等著..自由曲线曲面造型技术[M].北京:科学出版社,2000:391.
  • 5崔锦泰.小波分析导论[M].程正兴译.西安:西安交通大学出版社,2000. 被引量:2

共引文献1

同被引文献26

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部