期刊文献+

Non-linear Viscoelastic Rheological Properties of PCC/PEG Suspensions 被引量:5

Non-linear Viscoelastic Rheological Properties of PCC/PEG Suspensions
下载PDF
导出
摘要 The shear thinning and shear thickening rheological properties of PCC/PEG suspension were investigated with the increase of oscillatory amplitude stress at different constant frequencies. The results show that the complex viscosity was initially independent of stress amplitude and obvious shear thinning occurred, then dramatic shear thickening took place after reaching the minimum viscosity. Typically, in a constant frequency of 5 rad/s, the elastic modulus, viscous modulus, and tanδ (δ is the out-of-phase angle) vs. the stress amplitude was investigated. It is found that the elastic modulus initially appeared to be independent of stress amplitude and then exhibited a rapid decrease, but the viscous modulus was independent of amplitude stress at lower amplitude stress. After reaching the minimum value the viscous modulus showed a rapid increase. On the other hand, tanδ increased from 0.6 to 92, which indicates that the transition from elastic to viscous had taken place and tanδ showed a steep increase when shear thickening occurred. Lissajous plots are shown for the dissipated energy vs. different maximum stress amplitude in the shear thinning and shear thickening regions. The relationship of dissipated energy vs. maximum stress amplitude was determined, which follows a power law. In the shear thinning region the exponent was 1.91, but it steeply increases to 3.97 in the shear thickening region.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2009年第1期46-50,共5页 化学物理学报(英文)
基金 ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.50774096 and No.50604017).
关键词 Precipitated calcium carbonate SUSPENSION Shear thickening Dynamic oscillatory shear Rheological response 沉淀碳酸钙 悬浮液 振荡幅度 恒定频率 粘度 乙二醇
  • 相关文献

参考文献34

  • 1R. L. Hoffman, J. Rheol. 42, 111 (1998). 被引量:1
  • 2R. L. Hoffman, Trans. Soc. Rheol. 16, 155 (1972). 被引量:1
  • 3A. A. Catherall, J. R. Melrose, and R. C. Ball, J. Rheol. 44, 1 (2000). 被引量:1
  • 4B. J. Mranzano and N. J. Wagnar, J. Chem. Phys. 117, 10291 (2002). 被引量:1
  • 5Y. S. Lee and N. J. Wagner, Eng. Chem. Res. 45, 7015 (2006). 被引量:1
  • 6Q. M. Wu, J. M. Ruan, B. Y. Huang, Z. C. Zhou, and J. P. Zou, Acta Chim. Sin. 64, 1543 (2006). 被引量:1
  • 7H. Watanbe, M. L. Yao, K. Osaki, T. Shikata, and H. Niwa, Y. Morishima, Rheol. Acta 38, 2 (1999). 被引量:1
  • 8J. H. So, S. M. Yang, and J. C. Hyun, Chem. Eng. Sci. 56, 2967 (2001). 被引量:1
  • 9Q. M. Wu, J. M. Ruan, B. Y. Huang, Z. C. Zhou, and J. P. Zou, J. Cent. South. Univ. Technol. 13, 1 (2006). 被引量:1
  • 10H. L. Zang, J. M. Ruan, J. P. Zou, Q. M. Wu, Z. C. Zhou, and Z. H. Zhou, Sci. Chin. E doi: 10.1007/s11431-008-0283-6, (2009). 被引量:1

同被引文献18

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部