摘要
针对传统输电设备维修方案评价方法的不足,提出以可靠性为中心的基于期望缺供电量的设备维修方案风险评价方法;利用投影寻踪法和加速遗传算法,得到基于数据驱动的各个自然状态和待选方案的客观组合权重,充分挖掘损益值矩阵隐含的深层决策信息,克服了传统不确定型决策准则利用损益值矩阵信息偏少的弊端;基于组合客观权重将风险事件发生的概率和风险事件的后果有效地结合起来,更好地表示了输电设备维修方案可能面临的潜在风险。实例分析验证了该方法的可行性和有效性。
This paper points out the limitations of traditional risk evaluation method for power equipment maintenance plan, and provide an improved risk evaluation method. This method is based on the theories of reliability centered maintenance (RCM) and expected demand not supplied (EDNS). The datadriven combined weights of nature states and plans waited to select through the methods of PP and AGA, thus, the risk probability and risk results are considered at the same time effectively. These combined weights take full advantage of the decision - making information of the profit or loss matrix. So, it can indicate the potential risks in the maintenance plan accurately. Results of the case research show that the method is feasible and effective.
出处
《华北电力大学学报(自然科学版)》
CAS
北大核心
2009年第1期100-104,共5页
Journal of North China Electric Power University:Natural Science Edition
基金
华北电力大学青年教师科研基金
关键词
投影寻踪法
加速遗传算法
可靠性为中心的设备维修
风险评估
期望缺供电量
projection pursuit (PP) method
accelerating genetic algorithm (AGA)
reliability centered maintenance (RCM)
risk evaluation
expected demand not supplied (EDNS)