期刊文献+

增量式关联分类方法在病毒检测中的应用 被引量:2

Application of Incremental Associative Classification Method in Malware Detection
下载PDF
导出
摘要 传统关联规则挖掘算法主要基于支持度-可信度构架,时空开销的限制使其无法深入挖掘非频繁项集。目前对带类属性的关联分类增量学习研究较少,该文提出一种新的增量式关联分类方法,解决了带类属性数据的增量学习问题,在数据频繁更新时,实现有限时空开销下关联规则的快速提取和维护。实验结果表明,该方法能有效维护并更新关联规则,避免重复学习历史样本,保证分类模型的预测能力。 Traditional associative rule mining algorithm is mostly based on the support-confidence framework, which disable the in-depth study of frequent items for time and space limitations. There is few study of associative classification incremental learning currently. This paper presents a new incremental associative classification method, which can solve the incremental learning problems of data with class attribute, and realize the fast extraction and maintenance of associative rule with limited time and space when the data is updating frequently. Experimental results show that this method can quickly and effectively maintain and update the classification rules, which avoid re-learning the history samples and ensure the predictability of the classification model.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第4期159-161,164,共4页 Computer Engineering
基金 国家自然科学基金资助项目(10771176)
关键词 关联分类规则 增量学习 病毒检测 associative classification rule incremental learning malware detection
  • 相关文献

参考文献2

二级参考文献17

  • 1Jhan M Kamber著 范明 孟小峰等译.数据挖掘:概念与技术[M].北京:机械工业出版社,2001.. 被引量:2
  • 2Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large database[A]. Proceeding of the ACM SIGMOD International Conference on Management of Data [C]. 1993 (2) :207 - 216. 被引量:1
  • 3Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation[A]. (slides). Proc of 2000 ACM-SIGMOD Int Conf on management of data[C]. Dallas: TX, May, 2000. 1- 12. 被引量:1
  • 4Agrawal R, Srikant R. Mining sequential patterns[A]. Proc of the 11th International Conference on Data Engineering[C]. Taipei, Taiwan : 1995.3 - 14. 被引量:1
  • 5Han J, Pei J, Yin Y. Mining partial periodicity using frequent pattern tree [R]. Simon Fraser University Tech Rep: TR - 99 - 10, July 1999. 被引量:1
  • 6Cheung D, Han J, Ng V, et al. Maintenance of discovered association rules in large databases: an incremental updating technique [A]. Proceedings of the 12^th International Conference on Data Engineering(ICDE)[C]. New Orleans, Louisiana: 1996. 106 -114. 被引量:1
  • 7Cheung D, LEE S, Kao B. Ageneral incremental technique for maintaining discovered association rules[A]. Proceedings of the 5^th International Conference on Database Systems for Advanced Applications(DASFAA) [C]. Melbourne, Australia:World Scientific, 1997. 185 - 194. 被引量:1
  • 8R Agrawal, T Imielinski, A Swami. Mining association rules between sets of items in large databases. The ACM SIGMOD Int'l Conf Management of Data,Washington D C, 1993 被引量:1
  • 9J Han, M Kamber. Data Mining: Concepts and Techniques. Beijing: Higher Education Press, 2001 被引量:1
  • 10R Agrawal, R Srikant. Fast algorithm for mining association rules. The 20th Int'l Conf on VLDB, Santiago, Chile, 1994 被引量:1

共引文献65

同被引文献7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部