摘要
在Lp空间上研究板几何中一类具广义边界条件下各向异性、连续能量、均匀介质的奇异迁移方程。证明了其相应的奇异迁移算子产生C0半群和该半群的Dyson-Phillips展式的二阶余项是紧的,且该算子的谱在区域Γ中由至多可数个具有限重的离散本征值组成等结果。
The objective of this paper is to research singular transport equations with anisotropic continuous energy homogeneous slab geometry for generalized boundary condition in slab geometry. It proves that the transport operator generates a strongly continuous C0 semigroup V(t) ( t≥0) and the compactness properties of the second - order remaineder term of the Dyson -Phillips expansion for the C0 semigroup V(t) (t ≥0) in L^P( 1 〈p 〈 ∞) space. It obtains the spectrum of the transport operator consist of at most,isolate eigenvalues which have a finite algebraic multi- plicity in trip Г.
出处
《南昌大学学报(理科版)》
CAS
北大核心
2008年第6期535-539,共5页
Journal of Nanchang University(Natural Science)
基金
江西省自然科学基金资助项目(2007GZS0105)
关键词
奇异迁移方程
广义边界条件
C0半群
二阶余项
singular transport operator
generalized boundary condition
CO semigroup
second - order remaineder term