期刊文献+

Carbonate cementation-dissolution in deep-seated sandstones near the overpressure top in central Junggar Basin, Xinjiang, NW China 被引量:4

Carbonate cementation-dissolution in deep-seated sandstones near the overpressure top in central Junggar Basin, Xinjiang, NW China
下载PDF
导出
摘要 Fluid/rock interaction occurs frequently in the sandstones near the overpressure top in central Junggar Basin, and carbonate cementation-dissolution is related closely to the formation of secondary pores in the reservoir sandstones. From petrological, hydrochemical and fluid-inclusion studies of the deep-seated sandstones near the overpressure top in central Junggar Basin and the carbon and oxygen isotopic characteristics of carbonate cements in those sandstones, the following conclusions can be drawn: (1) Carbonates are the major cements. Two-stage cementation was commonly developed, with late-stage ferroan carbonate cementation being dominant; several secondary porosity zones were developed vertically in the sandstones near the overpressure top, and there is a mutually compensatory relationship between the carbonate contents and the mean porosity; (2) the alkalescent formation-water chemical environments are in favor of carbonate precipitation; (3) there were two phases of thermal fluid activity which are related to the late-stage carbonate cementation-dissolution; (4) with the overpressure top as the boundary, carbonate cements in the sandstones have slightly negative δ13C and δ18O values, showing such a variation trend that the δ13C and δ18O values near the coal-bearing Jurassic strata are lighter, those in the overpressure top are heavier, and those at the upper part of the overpressure top are lighter, which is considered to be the result of kinetic isotope fractionation driven by episodically overpressured fluid flow; (5) carbonate cementation is closely associated with the decarboxylation of organic acids, and secondary porosity zones resultant from dissolution by organic acids and CO2 derived from Jurassic coal-bearing strata, are the most important reservoir space of hydrocarbon, Studies of the mechanisms of carbonate cementation-dissolution and formation of secondary pores in the deep-seated sandstones near the overpressure top are of great significance both in theory and in practice in further inv Fluid/rock interaction occurs frequently in the sandstones near the overpressure top in central Junggar Basin, and carbonate cementation-dissolution is related closely to the formation of secondary pores in the reservoir sandstones. From petrological, hydrochemical and fluid-inclusion studies of the deep-seated sandstones near the overpressure top in central Junggar Basin and the carbon and oxygen isotopic characteristics of carbonate cements in those sandstones, the following conclusions can be drawn: (1) Carbonates are the major cements. Two-stage cemen- tation was commonly developed, with late-stage ferroan carbonate cementation being dominant; several secondary porosity zones were developed vertically in the sandstones near the overpressure top, and there is a mutually compensatory relationship between the carbonate contents and the mean porosity; (2) the alkalescent formation-water chemical environments are in favor of carbonate precipitation; (3) there were two phases of thermal fluid activity which are related to the late-stage carbonate cementation-dissolution; (4) with the overpressure top as the boundary, carbonate cements in the sandstones have slightly negative δ^13C and δ^18O values, showing such a variation trend that the δ^13C and δ^18O values near the coal-bearing Jurassic strata are lighter, those in the overpressure top are heavier, and those at the upper part of the overpressure top are lighter, which is considered to be the result of kinetic isotope fractionafion driven by episodically overpressured fluid flow; (5) carbonate cementation is closely associated with the decarboxylation of organic acids, and secondary porosity zones resultant from dissolution by organic acids and CO2 derived from Jurassic coal-beating strata, are the most important reservoir space of hydrocarbon, Studies of the mechanisms of carbonate cementation-dissolution and formation of secondary pores in the deep-seated sandstones near the overpressure top are of great significance both in theory an
作者 HE Sheng
出处 《Chinese Journal Of Geochemistry》 EI CAS 2009年第1期86-96,共11页 中国地球化学学报
基金 supported by the Doctoral Education Program Fund of Ministry of Education, China (No. 20060491505) the American Association of Petroleum Geologists Grant-in-Aid Foundation Program in 2007, the National Natural Science Foundation of China (No. 40739904) the Research Foundation for Outstanding Young Teachers, China University of Geosciences (Wuhan) (No. CUGQNL0840)
关键词 准噶尔盆地中部 原油 地球化学特征 生源构成 central Junggar Basin deep-seated sandstone carbonate cementation-dissolution secondary porosity overpressured fluid flow carbon and oxygen isotopic characteristics coal-bearing stratum
  • 相关文献

参考文献6

二级参考文献53

共引文献92

同被引文献77

引证文献4

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部