期刊文献+

基于短时能量比的语音端点检测算法的研究 被引量:10

Speech Endpoint Detection Algorithm Analysis Based on Short-term Energy Ratio
原文传递
导出
摘要 研究了噪声环境下,利用短时高低频能量比进行语音端点检测的问题。在高信噪比的情况下利用传统的双门限判决算法,在低信噪比的情况下采用短时高低频能量比并辅以过零率为特征参数的算法,保证了在高、低信噪比环境下的端点检测的准确性。试验结果表明,与传统的能量阈值法相比,提出的算法具有更好的性能,是一个简单、高效和稳健的语音端点检测算法。 This paper analyzes speech endpoint detection using the ratio of the average energy in the low-bands to that in the high-bands in noisy environments. It employs traditional double-threshold algorithm in the high SNR(Signal-Noise Ratio) environment and uses the ratio of the average energy in the low bands to that in the high- bands and the short-time zero-crossing rate in the low SNR environment, thus to ensure the accuracy in any environment. Experiments show that the proposed algorithm outperforms traditional double-threshold algorithm for speech endpoint detection and proves its accuracy, simplicity and robustness.
出处 《通信技术》 2009年第2期181-183,共3页 Communications Technology
关键词 语音端点检测 短时能量比 过零率 speech endpoint detection short-term energy ratio zero-crossing rate
  • 相关文献

参考文献5

  • 1Ganapathiraju A, Webster L, Trimble J, gush J, Kornman J. Comparison of energy-based endpoint detection for speech signal processing[A]. Processing of the IEEE Southeast con[C] Tampa, Florida, USA, 1996. 被引量:1
  • 2Chengalvarayan Speech/nonspeech R. Robust Energy Normalization using Discrimination for German connected DigitRecognition[M]. Proc. Eurospeech99, Budapest, Hungary 1999.61-64. 被引量:1
  • 3Haigh J A, Marson J S. Robust Voice Activity Detection Using CepstralFeatures[A]. IEEE TENCON[C],USA, 1993. 被引量:1
  • 4Deller J R, Proakis J G, Hansen J H L. Discrete-Time Processing of Speech Signals[M]. New York: Macmillan, 1993.308-312. 被引量:1
  • 5Jafer E, Mahdi A E. Wavelet-basedvoice/unvoicedclassification algorithm[J]. Zegreb, 1995, Croatia. 19.50-53. 被引量:1

同被引文献75

引证文献10

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部