期刊文献+

模糊标号典型相关分析及其在人脸识别中应用

Fuzzy label canonical correlation analysis and its application to face recognition
下载PDF
导出
摘要 把样本分布信息融于特征提取过程将有助于提高特征的分类能力.利用模糊隶属度概念,提出一种基于模糊标号典型相关分析的特征提取新方法.构造模糊标号刻画样本的分布情况,并将其与典型相关分析结合,能提取综合灰度信息和分布信息的有效判别特征.此外,针对样本不足导致的小特征值包含较多干扰信息的问题,基于矩阵理论及双空间分析思想,进一步提出双空间模糊标号典型相关分析算法,缓解了过小特征值对算法性能的影响.在ORL和组合人脸数据库上的实验结果表明新特征具有良好的分类能力,证实了所提算法的有效性及应用价值. Incorporating the sample distribution information into the process of feature extraction is beneficial to promoting the classification performance of features. A fuzzy label canonical correlation analysis (CCA) algorithm is proposed for image feature extraction. Fuzzy class labels in the form of membership degrees are designed elaborately to represent the sample distribution. Then the fuzzy labels are embedded in CCA to extract more discriminative features which combine the information about gray level and distribution together. Furthermore, according to the matrix theory and dual-space idea, an improved method named dual-space fuzzy label CCA is proposed to counteract the effect of small eigenvalues which are poorly estimated clue to finite samples. The experimental results on ORL and combined face databases show that the features have a powerful ability of recognition, and that the proposed methods are efficient and practical.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2009年第1期133-138,共6页 Journal of Dalian University of Technology
基金 新世纪优秀人才支持计划资助项目(NCET-05-0275) 国家自然科学基金资助项目(60673006,60873181)
关键词 典型相关分析 模糊隶属度 小样本问题 特征提取 人脸识别 canonical correlation analysis fuzzy membership degree small sample size problem feature extraction face recognition
  • 相关文献

参考文献14

  • 1HOTELLING H. Relations between two sets of variates [J]. Biometrika, 1936, 28:321-377. 被引量:1
  • 2孙文爽,陈兰祥编..多元统计分析[M].北京:高等教育出版社,1994:525.
  • 3MELZER T. Generalized canonical correlation analysis for object recognition [D]. Vienna: Vienna University of Technology, 2002. 被引量:1
  • 4孙权森,曾生根,王平安,夏德深.典型相关分析的理论及其在特征融合中的应用[J].计算机学报,2005,28(9):1524-1533. 被引量:89
  • 5HE Y H, ZHAO L, ZOU C R. Face recognition based on PCA/KPCA plus CCA [C] // ICNC 2005, LNCS 3611. Berlin: Springer-Verlag, 2005. 被引量:1
  • 6SUN T K, CHEN S C. Class label-based CCA [J]. Applied Computation, 2007, 185:272-283. 被引量:1
  • 7BARKER M, RAYENS W discrimination [J]. Journal Partial least squares for of Chemomelrics, 2003,17(3):166-173. 被引量:1
  • 8MOGHADDAM B, PENTLAND A. Probabilistic visual learning for object representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) :696-709. 被引量:1
  • 9YANG J, YANG J Y. Why can LDA be performed in PCA transformed space [J]. Pattern Recognition, 2003, 36:563-566. 被引量:1
  • 10WANG X G, TANG X O. Dual-space linear discriminant analysis for face recognition [C] // Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'04). Washington: IEEE Computer Society, 2004. 被引量:1

二级参考文献18

  • 1张尧庭.多元统计分析引论[M].北京:科学出版社,1999.35-46. 被引量:40
  • 2Hotelling H.. Relations between two sets of variates. Biometrika, 1936, 28: 321~377. 被引量:1
  • 3Phillips P.J., Moon H.J., Rizvi S.A., Rauss P.J.. The FERET evaluation methodology for face recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (10): 1090~1104. 被引量:1
  • 4Bolme D.S., Beveridge J.R., Teixeira M., Draper B.A.. The CSU face identification evaluation system: Its purpose, features, and structure. In: Proceedings of the 3rd International Conference on Computer Vision Systems(ICVS), Graz, Austria, 2003, 304~313. 被引量:1
  • 5Turk M., Pentland A.. Face recognition using Eigenfaces. In: Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA, 1991, 586~591. 被引量:1
  • 6Belhumeur P.N. et al.. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720. 被引量:1
  • 7Jin Z., Yang J.Y., Tang Z.M., Hu Z.S.. A theorem on the uncorrelated optimal discriminant vectors. Pattern Recognition, 2001, 34(7): 2041~2047. 被引量:1
  • 8Huang Y.S., Suen C.Y.. A method of combining multiple experts for the recognition of unconstrained handwritten numerals. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 7(1): 90~94. 被引量:1
  • 9Constantinidis A.S., Fairhurst M.C., Rahman A.F.R.. A new multi-expert decision combination algorithm and its application to the detection of circumscribed masses in digital mammograms. Pattern Recognition, 2001, 34(8): 1528~1537. 被引量:1
  • 10Jing X.Y., Zhang D., Yang Z.Y.. Face recognition based on a group decision-making combination approach. Pattern Recognition, 2003, 36(7): 1675~1678. 被引量:1

共引文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部