期刊文献+

实现AOI取像路径规划的混合遗传算法 被引量:2

A hybrid genetic algorithm of path planning for AOI
下载PDF
导出
摘要 为了提高自动光学检测过程中图像采集的效率,需要对取像的视场位置和取像的路径进行优化.现有取像方法的一个共同点就是效率偏低,鉴于此提出了基于混合遗传算法的路径规划方法,该方法可一步完成路径优化,进而提高取像的时间效率.仿真结果验证了该算法的有效性,在相同的条件下,可以减少取像时间,提高检测效率,克服了传统顺序取像方法的缺点,针对电路板进行离线路径规划,不会影响实际在线取像的时间.基于混合遗传算法的路径规划方法,有效解决了自动光学检测中路径规划关键问题,对提高工业生产效率,具有重要意义. In order to improve the efficiency of AOI in the process of collecting images, the location and field of image taking must be optimized. The existing methods in common are low efficient, so a new path planning method based on the hybrid genetic algorithm is proposed to optimize the path and raise the efficiency of detection. The simulation results show the effectiveness of the algorithm. Under the same conditions, the application of this method can save time, thus improves the efficiency of detection and overcomes the shortcomings of traditional methods such as image taking in order, meantime, the board for off-line path planning will not affect the time of actual on-line image taking. The path planning method based on the hybrid genetic algorithm is an effective solution to the key issues of path planning in AOI, and is of great significance for efficiency improvement in industrial production.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2009年第1期93-96,共4页 Journal of Harbin Institute of Technology
关键词 PCB 遗传算法 聚类 路径规划 PCB inspection genetic algorithm clustering problem path planning
  • 相关文献

参考文献8

二级参考文献11

  • 1罗勇军,石明洪,白英彩.基于模拟退火的多约束路径优化选择算法[J].上海交通大学学报,2005,39(4):585-589. 被引量:8
  • 2罗兵,章云.SMT焊膏印刷质量自动光学检测[J].电子质量,2005(12):30-32. 被引量:13
  • 3[2]KANUNGO T,et al.An efficient k-means clustering algorithm:analysis and implementation[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,2002,24:881 892. 被引量:1
  • 4[3]Lin Yu Tseng,Shiueng Bien Yang.A genetic approach to the automatic clustering problem[J].Pattern Recognition,2001,34:415-424. 被引量:1
  • 5[4]Hwa-Jung Kim,Tae-Hyoung Park.A Clustering Algorithm for Path Planning of SMT Inspection Machines[C].Proc.of the SICE,2003:2869-2874. 被引量:1
  • 6[7]Ying-Tung Hsiao,et al.Ant colony optimization for best path planning[C].Proc.of IEEE ISCIT,2004,1:109-113. 被引量:1
  • 7D T Pham,D Karaboga.Intelligent optimisation techniques[M].London;Hong Kong:Springer,2000:51-61. 被引量:1
  • 8赵静 但琦.数学建模与数学实验[M].北京:高等教育出版社德国:施普林格出版社,2002.. 被引量:13
  • 9康立山,谢云,尤矢勇.非数值并行算法--模拟退火算法[M]. 北京:科学出版社,1997. 被引量:5
  • 10吴翊,吴孟达,成礼智.数学建模的理论与实践[M].北京:国防科技大学出版社,2002. 被引量:1

共引文献23

同被引文献8

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部