期刊文献+

一类求解退化凸二次规划的投影神经网络

A Projection Neural Network for Solving the Degenerate Quadratic Program
下载PDF
导出
摘要 借助变分不等式和Kuhn-Tucker条件,构造了一类投影神经网络求解线性约束的退化凸二次规划问题.与已有的求解退化凸规划问题的神经网络系统相比,系统的适用范围更广;在理论方面,系统是全局收敛的;数值实例显示了所得结论的有效性和正确性. By making use of variational inequality and Kuhn-Tucker conditions, we develop a projection neural network for solving degenerate quadratic programming problems with general linear constraints. Compared with the existing neural networks for solving degenerate convex quadratic program, the proposed neural network has a wider domain for implementation. In the theoretical aspects, the proposed neural network is shown to have global convergence. Illustrative examples show that the proposed neural network is effective and correct.
机构地区 燕山大学理学院
出处 《五邑大学学报(自然科学版)》 CAS 2009年第1期57-62,共6页 Journal of Wuyi University(Natural Science Edition)
关键词 退化凸二次规划 投影神经网络 变分不等式 K-T条件 全局收敛 degenerate convex quadratic program projection neural network variational inequality Kuhn-Tucker conditions global convergence
  • 相关文献

参考文献9

  • 1BERTSEKAS D P. Parallel and distributed, numerical methods[M]. NJ: Parentice-Hall, Englewood Cliffs, 1989. 被引量:1
  • 2XIA Y S, FENG G, WANG J. A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equation[J]. Neural Networks, 2004, 17:1003-1015. 被引量:1
  • 3XIA Y S, FENG G. An improved network for convex quadratic optimization with application to real-time beamforming[J]. Neurocomputing, 2005, 64: 359-37. 被引量:1
  • 4CICHOCKI A, UNBEHAUER R. Neural networks for optimization with bounded constraints[J]. IEEE Trans On Neural Network, 1993, 4: 293-304. 被引量:1
  • 5KENNEDY M P, CHUA L O. Neural networks for nonlinear programming[J]. IEEE Trans on Circuits and systems, 1988, 35: 554-562. 被引量:1
  • 6XIA Y S, WANG J. A recurrent neural network for solving linear projection equations[J]. Neural Networks, 2000, 13: 337-350. 被引量:1
  • 7XIA Y S, WANG J. A dual neural network for kinematic control of redundant robot manipulators[J]. IEEE Trans Syst, Man Cybern, Part B, 2001, 31: 147-154. 被引量:1
  • 8XIA Y S. A new neural network for solving linear and quadratic programming problems[J]. IEEE Trans on Neural Networks, 1996, 7: 1544-1547. 被引量:1
  • 9HALE J. Theory of functional differential equation[M]. New York: Springer-Verlag, 1997. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部