期刊文献+

基于形态滤波遗传算法对目标红外图像特征检测 被引量:2

Target IR Image Signature Detection Based on Morphology Filtered Genetic Algorithm
下载PDF
导出
摘要 将形态滤波和自适应遗传算法结合起来,提出了一个用于目标检测的形态滤波器参数优化遗传算法。通过设计了形态滤波的遗传算法,寻求最佳结构元,以实现对目标的自适应检测。作为2个特殊环境中的应用检测实例,分别对固体推进器尾喷焰红外图像和复杂背景下的弱小目标进行检测。实验结果表明该方法能够更好地适应环境变化,更大程度地提高目标信号检测的信号噪声(SNR)比,有效地检测出复杂背景下的目标。 A morphology filtered parameter optimized genetic algorithm for target detection was put forward, which combines morphology filter and self adaptive genetic algorithm. Self-adaptive target detection was realized through morphology filtered genetic algorithm and seeking of the best framework unit. As two special detecting applications, solid thruster plume IR image and weak small infrared target under complex background were detected. The experimental results testified that this method can adapt to different environment, greatly enhance the signal noise ratio of target detection, and effectively detect target from complex background. Compared with other methods, this method has more practical value.
出处 《装备环境工程》 CAS 2009年第1期5-9,共5页 Equipment Environmental Engineering
基金 国家自然科学基金(60801047) 陕西省教育厅基金(08JK480) 咸阳师范学院人才引进项目(08XSYK304)
关键词 自适应遗传算法 形态滤波 红外图像特征提取 红外弱小目标检测 self-adaptive genetic algorithm morphology filter IR imaging detection weak small infrared target detection
  • 相关文献

参考文献8

二级参考文献17

  • 1邢延,张天序.复杂背景下基于知识的目标识别算法研究[J].模式识别与人工智能,1995,8(3):237-242. 被引量:5
  • 2[1]Marcus Stavos Stefanou, Richard c Olsen, Herschel H Loomis. Signal Perspectives of Hyperspectral Imagery Analysis Techniques[R], 1998, AD-A333 254. 被引量:1
  • 3[2]Dimitris Manolakis, Chrisitina Siracusa, David Marden, et al. Hyperspectral adaptive matched filter detectors:Practical performance comparison[J]. SPIE, 2001, 4381: 18-33. 被引量:1
  • 4[3]Joseph C Harsanyi, CheinI Chang. Hyperspectral image classifacation and dimensionality reduction: An orthogonal subspace projection approach[J]. IEEE Trans. On Geoscience and Remote sensing, 1994, 32(4): 779-785. 被引量:1
  • 5[4]Schaum A. Spectral subspace matched filtering[J]. SPIE, 2001, 4381: 1-17. 被引量:1
  • 6[5]David Gillis, Peter Palmadesso, Jeffrey Bowles. An automatic target recognition system for hyperspectral imagery using ORASIS[J]. SPIE, 2001, 4381: 34-43. 被引量:1
  • 7[6]Manolakis D, Shaw G. Detection algorithms for hyperspectral imaging applications[J]. IEEE Signal Processing Magazine, 2002, 19(7): 29-43. 被引量:1
  • 8[7]Peter j Verveer, Robert P W Duin. An evaluation of intrinsic dimensionality estimators[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence, 1995, 17(1): 81-85. 被引量:1
  • 9[8]Bruske J, Sommer G. Intrinsic dimensionality estimation with optimally topology preserving maps[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence, 1998, 20(5): 572-575. 被引量:1
  • 10章毓晋.图像分割[M].北京:科学出版社,2001.34. 被引量:222

共引文献73

同被引文献6

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部