期刊文献+

Isolation and application of effective nitrogen fixation rhizobial strains on low-phosphorus acid soils in South China 被引量:3

Isolation and application of effective nitrogen fixation rhizobial strains on low-phosphorus acid soils in South China
原文传递
导出
摘要 Soybean (Glycine max L.) is a very important food and oil crop in China. Legume-rhizobium symbiotic nitrogen (N) fixation is an important biological character and also the base of improving soil fertility of soybean. However, soybean production and development is severely limited in tropical and subtropical areas in China due to a lack of effective rhizobial inoculants adapting to low-phosphorus (P) acid soils. In the present study, 12 soybean rhizobial strains were isolated and purified from the nodules of two soybean genotypes contrasting in P efficiency, which were grown on different low-P acid soils with different soybean cultivation histories. Results from 16S rDNA sequence analysis showed that these 12 rhizobial strains belonged to the genus of Bradyrhizobium, which had higher nitrogenase activities compared to the control strain, Bradyrhizboium japonicum USDA110. A field experiment was carried out by applying rhizobial inoculants, a mixture of three rhizobial strains that showed the highest ni- trogenase activity, on a typical low-P acid soil in South China. The results showed that, without inocu- lation, no nodules were formed in the three soybean genotypes tested; with inoculation, the nodulation rates in all were 100%. Inoculation with rhizobial inoculants not only made many nodules formed, but also increased soybean shoot biomass and yield, and improved nitrogen (N) and P nutrient status. Among which, shoot dry weight, N and P content of a soybean genotype, Huachun 3, inoculated with rhizobium were increased 154.3%, 152.4% and 163.2% compared to that without inoculation, respec- tively. We concluded that: (i) The effective indigenous rhizobial strains isolated in this study from soybeans on low-P acid soils in South China have the characters of broad host range, high nodulation efficiency, efficient N fixation, great low pH and low P tolerance. (ii) Soil environment and host types are the key factors to screen the effective rhizobial strains. Considering soil pH values and P efficiency of the host geno Soybean (Glycine max L.) is a very important food and oil crop in China. Legume-rhizobium symbiotic nitrogen (N) fixation is an important biological character and also the base of improving soil fertility of soybean. However, soybean production and development is severely limited in tropical and subtropical areas in China due to a lack of effective rhizobial inoculants adapting to low-phosphorus (P) acid soils. In the present study, 12 soybean rhizobial strains were isolated and purified from the nodules of two soybean genotypes contrasting in P efficiency, which were grown on different Iow-P acid soils with different soybean cultivation histories. Results from 16S rDNA sequence analysis showed that these 12 rhizobial strains belonged to the genus of Bradyrhizobium, which had higher nitrogenase activities compared to the control strain, Bradyrhizboium japonicum USDA110. A field experiment was carried out by applying rhizobial inoculants, a mixture of three rhizobial strains that showed the highest nitrogenase activity, on a typical Iow-P acid soil in South China. The results showed that, without inoculation, no nodules were formed in the three soybean genotypes tested; with inoculation, the nodulation rates in all were 100%. Inoculation with rhizobial inoculants not only made many nodules formed, but also increased soybean shoot biomass and yield, and improved nitrogen (N) and P nutrient status. Among which, shoot dry weight, N and P content of a soybean genotype, Huachun 3, inoculated with rhizobium were increased 154.3%, 152.4% and 163.2% compared to that without inoculation, respectively. We concluded that: (i) The effective indigenous rhizobial strains isolated in this study from soybeans on Iow-P acid soils in South China have the characters of broad host range, high nodulation efficiency, efficient N fixation, great low pH and low P tolerance. (ii) Soil environment and host types are the key factors to screen the effective rhizobial strains. Considering soil pH values and P efficie
机构地区 Root Biology Center
出处 《Chinese Science Bulletin》 SCIE EI CAS 2009年第3期412-420,共9页
基金 Supported by National Key Basic Research and Development of China (Grant No. 2005CB120902) McKnight Foundation Collaborative Crop Research Program (USA) (Grant No. 05-780) National Natural Science Foundation of China (Grant No. 30571111)
关键词 酸性土壤 大豆 根瘤菌 氮固定 acid soils, low-P, soybean, rhizobium
  • 相关文献

参考文献6

二级参考文献44

共引文献327

同被引文献22

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部