摘要
在任意的Banach空间的条件下,具误差的Ishikawa迭代程序强收敛到非线性方程x+Tx=f的唯一解并且是几乎稳定的.其结果推广、改进和统一了Zeng和Liu的相关结果.
It is proved that under suitable conditions, the Ishikawa iterative scheme with random errors both convergence strongly to the unique solution of the nonlinear equation x+ Tx=land is almost stable in an arbitrary real Banach space. The results presented in this paper generalize and improve the corresponding results of Zeng and Liu.
出处
《应用数学》
CSCD
北大核心
2009年第1期155-160,共6页
Mathematica Applicata