期刊文献+

基于最大信噪比的盲源分离算法的修正与比较 被引量:7

Revision and Comparison of Blind Source Separation Algorithm Based on Maximum Signal Noise Ratio
下载PDF
导出
摘要 对基于最大信噪比的盲源分离算法进行了修正,解决了原算法在一些情况下失效的问题,并且比较分析了以上算法和全局最优盲源分离算法的分离性能。仿真结果表明,修正了的基于最大信噪比的盲源分离算法和全局最优盲源分离算法经常在分离性能上很相近,且都解决了修正前算法在一些情况下失效的问题。 This paper revises the blind source separation algorithm based on maximum signal noise ratio and solves the problem of losing the effect under some conditions of the original algorithm. This paper also compares and analyzes the separation performances of the above two and the algorithm based on global optimal property. Simulations show that the separation performances of the revised algorithm based on maximum signal noise ratio and the algorithm based on global optimal property are always similar, and they both solves the problem of losing the effect under some conditions of the original algorithm.
出处 《电脑与信息技术》 2009年第1期19-21,共3页 Computer and Information Technology
关键词 最大信噪比 滑动平均 特征向量 全局最优 maximum signal noise ratio moving average eigenvector global optimal property
  • 相关文献

参考文献6

  • 1马建仓,牛奕龙,陈海洋编著..盲信号处理[M].北京:国防工业出版社,2006:281.
  • 2M Borga.Learning multidimensional signal processin[M] .Unpublished doctoraldissertation Linkoping University, Linkoping, Sweden, 1998. 被引量:1
  • 3张小兵,马建仓,陈翠华,刘恒.基于最大信噪比的盲源分离算法[J].计算机仿真,2006,23(10):72-75. 被引量:27
  • 4Yiu-ming Cheung, Hailin Liu.A New Approach to Blind Source Separation with Global Optimal Property[J].Facuhy Research Grant of Hong Kong Baptist University with Project Number: FRG/01-02/Ⅱ-24. 被引量:1
  • 5毕雪,陈向东,李湃.基于小波变换的全局最优独立分量分离算法[J].传感器与微系统,2007,26(8):102-104. 被引量:3
  • 6张发启主编..盲信号处理及应用[M].西安:西安电子科技大学出版社,2006:424.

二级参考文献16

  • 1A J Bell and T J Sejnowski. An information approach to blind separation and blind deconvolution[J]. Neural Computation,1995,7(6): 1129 - 1159. 被引量:1
  • 2S Amari, A Cichocki, H H Yang. A new learning algorithm for blind signal separation[J]. Advances in Neural Information Processing Systems, Cambridge, MA, 1997 -8. 657 - 663. 被引量:1
  • 3D T Pham, P Garrat and C Jutten. Separation of a mixture of independent sources through a maximum likelihood approach[ CI. Proceedings of EUSIPCO, 1992 -4. 771- 774. 被引量:1
  • 4J V Stone. Blind Source Separation Using Temporal Predictability[ J]. Neural Computation, 2001 - 7. 150 - 165 被引量:1
  • 5Y M Cheung, H L Liu. A new approach to blind source separation with global optimal property[C]. Proceedings of the IASTED International Conference of Neural Networks and Computational Intelligence. Grindelwald, Switzerland 2004. 137 - 141. 被引量:1
  • 6M Borga. Learning multidimensional signal processing. [ M].Unpublished doctoraldissertation Linkoping University,Linkoping, Sweden. 1998. 被引量:1
  • 7T W Lee, et al. Independent component analysis using an extended infomax algorithm for mixed sub - Gaussian and super - Gaussian sources [J]. Neural Computation, 1999,11(2) :409 - 433 被引量:1
  • 8A Hyvarinen, et al. A fast fixed - point algorithm for independent analysis[ J]. Neural Computation, 1997 -9. 1483 - 1492. 被引量:1
  • 9Herault J,Jutten C. Blind separation of sources, part I:An adaptive algorithm based on neuromimatic architecture [ J ]. Signal Processing,1991,24( 1 ) :1 -10. 被引量:1
  • 10Comon P. Independent component analysis : Anewconcept [ J ].Signal Processihg,1994,36(3) :287. 被引量:1

共引文献28

同被引文献61

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部