期刊文献+

基于改进蚁群算法拣选作业优化问题的求解 被引量:17

Solution of Order Picking Optimization Problem Based on Improved Ant Colony Algorithm
下载PDF
导出
摘要 合理优化拣选作业是提高自动化仓库整体运行效率的重要策略。针对自动化仓库固定货架拣选作业的特点,构建了货物拣选路径优化问题的数学模型,采取候选节点集合策略、选择算子及自适应调整算法参数改进措施,设计一种改进的蚁群算法。实验表明,该算法具有较好的全局寻优能力,收敛速度大幅度提高,能够较好地满足中大规模拣选作业要求。 Optimizing the order picking is an important strategy to improve the working efficiency of automated warehouse. According to the requirements of order picking tasks of the fixed shelve, a mathematic model is constructed. An improved ant colony algorithm for the order picking problem is designed. Three improvements are adopted: awaiting nodes set, selection operator and dynamic change on algorithm parameters. Simulation results demonstrate the approach has better overall search ability and quickly astringency, satisfying the demands of medium or large scale work.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第3期219-221,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60574010) 辽宁省高等学校优秀人才支持计划基金资助项目(2006R31) 辽宁省高等学校创新团队支持计划基金资助项目(2007T028)
关键词 改进蚁群算法 自动化仓库 拣选作业 组合优化问题 improved ant colony algorithm automated warehouse order picking combinatorial optimization problem
  • 相关文献

参考文献6

  • 1Jeroen E Van D B. Analytic Expressions for the Optimal Dwell Point in An Automated Storage/Retrieval System[J]. Int. Production Economics, 2002, 760): 13-25. 被引量:1
  • 2Hu Yahong, Huang Shellying, Chen Chuanyu, et al. Travel Time Analysis of a New Automated Storage and Retrieval System[J]. Computers & Operations Research, 2005, 32(6): 1514-1544. 被引量:1
  • 3陈永强.人工蚁群算法及其在组合优化中的应用[D].哈尔滨:哈尔滨工业大学,2003. 被引量:7
  • 4Dorigo M, Birattari M, Stiitzle T. Ant Colony Optimization: Artificial Ants as a Computational Intelligence Technique[J]. IEEE Computational Intelligence Magazine, 2006, 11 (4): 28-39. 被引量:1
  • 5Dorigo M, Vitorio M, Alberto C. The Ant System: Optimization by a Colony of Cooperating Agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1996, 26(1): 1-13. 被引量:1
  • 6田国会,张攀,李晓磊,尹建芹,路飞.一类仓库作业优化问题的混合遗传算法研究[J].系统仿真学报,2004,16(6):1198-1201. 被引量:21

二级参考文献5

  • 1P Merz. Memetic Algorithms for Combinatorial Optimization Problems: Fitness Landscapes and Effective Search Strategies [D]. Germany: PhD thesis.University of Siegen, 2000. 被引量:1
  • 2K D Boese. Cost versus distance in the traveling salesman problem [J]. Technical report, TR950018, UCLA CS Department, 1995. 被引量:1
  • 3G Reinelt. The Traveling Salesman: Computational Solutions for TSP Applications (Lecture Notes in Computer Science)[M]. Berlin: Springer-Verlag, 1994. 被引量:1
  • 4S Lin. Computer solutions of the traveling salesman problem [J]. The Bell System Technical Journal, 1965, 44: 2245-2269. 被引量:1
  • 5田国会,刘长有,林家恒,常发亮,贾磊,路飞,李晓磊,商允伟,李国锋.自动化立体仓库若干优化调度问题及其研究进展[J].山东工业大学学报,2001,31(1):12-17. 被引量:39

共引文献26

同被引文献148

引证文献17

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部