期刊文献+

绝缘管道内油流带电引起的静电场计算 被引量:10

Calculation of Electrostatic Field at Insulated Pipe Wall Induced by Oil Flow Electrification
下载PDF
导出
摘要 绝缘管道内的油流带电将造成管道内壁面上静电荷的积聚,当电荷积聚到一定程度时,会发生静电放电,造成管道表面腐蚀,甚至导致管壁穿孔。因此,管道壁面上静电场的有效计算公式对于确保油品的安全输送无疑具有指导意义。在合理简化的基础上,文章推出了架空敷设和管外壁附有接地导体层的绝缘管道壁面上静电势和电场强度的计算公式,利用计算公式简要分析了敷设方式和管材的导电性能对这两个参量的影响。计算结果表明:两种敷设方式下管壁的静电位都随管材电导率的增加而减少;与架空敷设相比,管外壁接地导体层能明显降低管壁面上的电场强度,因此绝缘管道应尽量避免架空敷设。 When oil flows through an insulated pipeline, charge accumulation will occur at the liquid/solid interface, which causes an electrostatic potential build-up. When the potential is above a certain threshold, an electrostatic discharge may occur and result in erosion and even puncture at the wall. So an effective formula to evaluate the electric field at the wall has a guiding meaning to ensure the safety of oil transport and storage. Based on some reasonable simplifications, formulas for electrostatic potential and field strength at the wall of an insulated pipeline either overhead laying or with a grounded conductive layer outside the insulated wall are derived in this paper. Finally, these formulas are used to analyze briefly the influences of the different pipeline laying ways and the pipe wall’s conductivity on the potential and field strength at the wall. Calculation results show that the electrostatic potential at the pipe wall decreases with increase of conductivity of the pipe wall material in both pipeline laying ways, and that compared with the overhead laying, the grounded conductive layer outside the insulated pipe wall can remarkably reduce the strength of electric field at the wall. Therefore it is advised that the overhead laying way for insulated pipeline should be avoided as possible.
机构地区 空军油料研究所
出处 《石油工程建设》 2009年第1期5-10,共6页 Petroleum Engineering Construction
基金 中国人民解放军总后勤部军需物资油料部资助项目(20070407)
关键词 绝缘管道 油流带电 静电势 电场强度 敷设方法 insulated pipeline oil flow electrification electrostatic potential electric field strength laying method
  • 相关文献

参考文献15

  • 1Dean J C, Williams G M, DeGiovanni J. Analysis of flow electrification in fuel distribution system [J]. IEEE Transactions on Industry Application, 1993, 29(3): 639-643. 被引量:1
  • 2Hearn G L. Electrostatic ignition hazards arising from fuel flow in plastic pipelines [J]. Journal of Loss Prevention in the Process Industries, 2002, 15(2): 105-109. 被引量:1
  • 3Gibbings J C, Saluja G S. Electrostatic streaming current and potential in a liquid flowing through insulating pipe [C]. International Meeting on Electrostatic Charging, Frankfurt, Germany, 1973:393- 408. 被引量:1
  • 4Gasworth S M, Melcher J R, Zahn M. Flow-induced charge accumulation in thin insulating tubes [J]. IEEE Transactions on Electrical Insulation, 1988, 29(3): 103-115. 被引量:1
  • 5Tahani A, Salon S J, Nelson J K. Numerical modeling of electrification phenomena in insulating tubes [J]. Journal of Physics D: Applied Physics, 1996, 29(3 ): 830-831. 被引量:1
  • 6Pekkala P, Paasi J, Hearn G, et al. Characteristics of electrostatic discharges from intermediate bulk container materials [J]. Journal of Electrostatics, 2005, 63 (5): 489-494. 被引量:1
  • 7Pailiat T, Moreau E, Touchard G. Space charge density at the wall in the case of heptane flowing through an insulating pipe [J]. Journal of Electrostatics, 2001, 53(2): 171-182. 被引量:1
  • 8Moreau E, Paillat T, Touchard G. Space charge density in dielectric and conductive liquids flowing through a glass pipe [J]. Journal of Electrostatics, 2001, 51-52 (1): 448-454. 被引量:1
  • 9Glor M. Hazards and problems associated with liquids [J]. Journal of Electrostatics, 2001, 51-52 ( 1 ): 359-365. 被引量:1
  • 10Gavis J, Koszman I. Development of charge in low conductivity liq uids flowing past surfaces: a theory of the phenomenon in tubes [J]. Journal of Colloid Science, 1961, 16(4): 375-391. 被引量:1

同被引文献87

引证文献10

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部