期刊文献+

基于待与项集的频繁项集挖掘算法的研究 被引量:4

Algorithm of mining frequent itemsets based on pending items
下载PDF
导出
摘要 针对Apriori算法存在的问题,提出了一种基于待与项集的频繁项集挖掘算法,从两方面考虑对算法效率进行改进:通过对项编码来减少扫描数据库次数;提出了一个新的概念—待与项集,通过从待与项集中删除项来减少候选项集的数量。实例分析表明,该方法仅需扫描一次数据库,而且具有搜索速度快、节省内存空间等优点。该算法同样适用于处理超大型事务数据库。 The problem of Apriori algorithm is discussed, and an algorithm of mining frequent itemsets based on pending items is proposed. The mining efficiency is improved from two aspects. One is to decrease the scanning times over database by means of coding for every item. The other is to reduce the candidate itemsets by deleting items from pending items, which is advanced as a new concept. Analysis of examples proves that it can not only scan the database once, but also has the virtues in high speed, less memory cost. This algorithm is also fit for dealing with super transaction database.
作者 傅慧 邹海
出处 《计算机工程与设计》 CSCD 北大核心 2009年第1期129-131,共3页 Computer Engineering and Design
关键词 APRIORI算法 频繁项集 待与项集 裁减 候选项集 Apriori algorithm frequent itemsets pending items pruning candidate itemsets
  • 相关文献

参考文献8

二级参考文献29

  • 1R Agrawal, et al. Mining Association Rules Between Sets of Items in Large Databases[ C ]. Washington: Proceedings of the ACM SIGMOD International Conference Management of Data, 1993. 207-216. 被引量:1
  • 2Han J, Kamber M. Data Mining: Concepts and Technique [ M ]. Beijing: High Education Press,2001. 149-184. 被引量:1
  • 3J Han, J Pei B. Mortazavi-Asl : Frequent Pattern-projected Sequential pattern Mining [ C ]. Proc 2000 Int Conf knowledge Discovery. and Data Mining( KDD' 00 ), Boston, MA ,2000. 被引量:1
  • 4Han J,Jian P,Yiwen Y. Mining Frequent Patterns Without Candidate Generation[ C]. Proceedings of the 2000 ACM SIGMOD International Conference Management of Data. Dallas,2000.1-12. 被引量:1
  • 5Agrawal R, Srikant R. Fast Algorithm for Mining Association Rules[ C]. Proceedings of the 20th lnternation Conference on VLDB, Santiago, 1994. 487 - 499. 被引量:1
  • 6R Agrawal,et al.Mining Association Rules Between Sets of Items in Large Databases[C].Washington:Proceedings of the ACM SIGMOD International Conference Management of Data,1993.207-216. 被引量:1
  • 7Han J,Kamber M.Data Mining:Concepts and Technique[M].Beijing:High Education Press,2001.149-184. 被引量:1
  • 8J Han,J Pei B.Mortazavi-Asl:Frequent Pattern-projected Sequential pattern Mining[C].Proc.2000 Int.Conf.knowledge Discovery and Data Mining(KDD'00),Boston,MA,2000. 被引量:1
  • 9Han J,Jian P,Yiwen Y.Mining Frequent Patterns Without Candidate Generation[C].Proceedings of the 2000 ACM SIGMOD International Conference Management of Data.Dallas,2000.1-12. 被引量:1
  • 10Agrawal R,Srikant R.Fast Algorithm for Mining Association Rules[C].Proceedings of the 20th Internation Conference on VLDB,Santiago,1994.487-499. 被引量:1

共引文献283

同被引文献30

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部