期刊文献+

基于作用集的一类支持向量机递推式训练算法 被引量:3

Recursive training algorithm for one-class support vector machine based on active set method
下载PDF
导出
摘要 为了求解一类支持向量机(1-SVM)的二次规划问题(QPP),利用该QPP的稀疏解集性质,提出了基于作用集的1-SVM递推式训练算法.将支持向量集设定为作用集,迭代地局部优化作用集以获得全局最优解,并引进递推式算法降低计算复杂度。不同于序贯最小优化(SMO)收敛目标函数的思路,该算法寻找支持向量在最优状态下的分布,对Karush-Kuhn-Tucker(KKT)条件不敏感,并可获得解析的最优值。仿真结果表明,本算法在计算时间和精度上均优于SMO,可有效地应用于1-SVM的大样本学习。 A recursive algorithm based on active set method was proposed considering the sparsity of the solution of quadratic programming problem (QPP) to solve the QPP of one-class support vector machine (1-SVM). The global solution was obtained by the iteration of the local optimizations of active set with support vectors treated as the active set. And a recursive method was introduced to reduce the computational cost. The algorithm searched for the optimal distribution of support vectors unlike the sequential minimal optimization (SMO) algorithm focusing on the convergence of object function. Then the absolutely analytical solution was obtained without the sensitivity of Karush-Kuhn-Tucker(KKT) tolerance. The simulation results show that the algorithm outperforms SMO in time consumption and accuracy and can be efficiently applied to 1-SVM for large scale systems.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第1期42-46,共5页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(60702023) 浙江省自然科学基金资助项目(Y107440)
关键词 一类支持向量机 作用集法 二次规划问题 序贯最小优化 one-class support vector machine (1-SVM) active set method quadratic programming problem (QPP) sequential minimal optimization (SMO)
  • 相关文献

参考文献15

  • 1VAPNIK V. Statistical learning theory[M]. New York: Wiley, 1998. 被引量:1
  • 2TAX D M A, DUIN R P W. Support vector domain description [J]. Pattern Recognition Letters, 1999, 20(11-13) : 1191 - 1199. 被引量:1
  • 3SCHOI.KOPF B, WILI.IAMSON R C, SMOLA A J, et al. Support vector method for novelty detection [J]. Advances in Neural Information Processing Systems, 2000, 12: 582-588. 被引量:1
  • 4BEN HUR A, HORN D, SIEGELMANN H T, et al. Support vector clustering[J].Journal of Machine Learning Research, 2001, 2:125 - 137. 被引量:1
  • 5BEN-HUR A, HORN D, SIEGEI.MANN H T, et al. A support vector method for hierarchical clustering[J]. Advances in Neural Information Processing Systems, 2001, 13:367 - 373. 被引量:1
  • 6PLATT J. Fast training of support vector machines using sequential minimal optimization [C] // Advances in Kernel Method-Support Vector Learning. Cambridge, MA: MIT, 1999:185-208. 被引量:1
  • 7NOCEDAL J, WRIGHT S. Numerical optimization[M]. New York: Springer Verlag, 1999. 被引量:1
  • 8SCHOLKOPF B, PLATT J, SHAWE-TAYLOR J, et al. Estimating the support of a high-dimensional distribution [J]. Neural Computation, 2001, 13 ( 7 ):1443 - 1471. 被引量:1
  • 9Forest cover type [DB/OL]. [1998-08-28]. http://kdd. ics. uci. edu/databases/covertype/covertype, html. 被引量:1
  • 10VISHWANATHAN S V N, SMOLA A J, NARAS1M- BAMURTY N. SSVM: a simple SVM algorithm[C]// Proceeding of IJCNN 2002. Honolulu: [s. n.], 2002: 2393 - 2398. 被引量:1

二级参考文献12

  • 1Vapnik V.N..The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995 被引量:1
  • 2Cherkassky V.,Mulier F..Learning From Data-Concepts,Theory and Methods.New York:John Wiley Sons,1998 被引量:1
  • 3Joachims T..Text Categorization with support vector machines:Learning with Many Relevant Features.In:Proceedings of the European Conference on Machine Learning (ECML),1998,137~142 被引量:1
  • 4Guyon I.,Weston J.,Barnhill S..Gene selection for cancer classification using support vector machines.Machine Learning,2002,46(1):389~422. 被引量:1
  • 5Kivinen J.,Smola A.,Williamson R..Online learning with kernels.In:Diettrich T.G.,Becker S.,Ghahramani Z.eds..Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,2002,785~793 被引量:1
  • 6Ralaivola L.et al..Incremental support vector machine learning:A local approach.In:Proceedings of the International on Conference on Artificial Neural Networks,Vienna,Austria,2001,322~329 被引量:1
  • 7Ruping S..Incremental learning with support vector machines.Dortmund University,Dortmund:Technical Report TR 18,2002 被引量:1
  • 8Martin M..On-line support vector machines for function approximation.Politecnica University,Catalunya,Spain:Technical Report LSI-02-11-R,2002 被引量:1
  • 9Kuh A..Adaptive kernel methods for CDMA systems.In:Proceedings of the International Joint Conference on Neural networks(IJCNN.2001),Washington DC,2001,1404~1409 被引量:1
  • 10Suykens J.A.K.,Vandewale J..Least squares support vector machine classifiers.Neural Processing Letters,1999,9 (3):293~300 被引量:1

共引文献111

同被引文献32

  • 1孔锐,张冰.一种快速支持向量机增量学习算法[J].控制与决策,2005,20(10):1129-1132. 被引量:31
  • 2周涛,张艳宁,袁和金,邓方安,陆惠玲.基于改进粒子群算法的支持向量机[J].计算机工程与应用,2007,43(15):44-46. 被引量:9
  • 3FROME A, SINGER Y, SHA F, et al. Learning globally-consistent local distance functions for shape based image retrieval and classification [C}// Proceedings of the llth IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007: 1255 1263. 被引量:1
  • 4BOIMAN O, SHECHTMAN E, IRANI M. In defense of nearest neighbor based image classification [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska: IEEE, 2008 : 1 - 8. 被引量:1
  • 5VARMA M, RAY D. I.earning the discriminative powerinvariance trade-off [C]// Proceedings of the IEEE International Conference on Computer Vision. Minneapolis, USA: IEEE, 2007:1-8. 被引量:1
  • 6FROME A, SINGER Y, MALIK J. Image retrieval and classification using local distance functions [C]// Proceedings of the 20th Annual Conference on Neural Information Processing Systems. Vancouver, Canada: MIT, 2006: 417-425. 被引量:1
  • 7GRAUMAN K, DARRELL T. The pyramid match kernel: efficient learning with sets of features[J]. The Journal of Machine Learning Research, 2007, 8 ( 1 ): 725 -760. 被引量:1
  • 8HIFSTER E, LIENHART R, SLANEY M. Image retrieval on large-scale image databases [C]// Proceedings of the 6th ACM International Conference on Image and Video Retrieval. Amsterdam, Netherlands: ACM, 2007: 17-24. 被引量:1
  • 9CHEN Y, WANG J Z. Image categorization by learning and reasoning with regions[J].The Journal of Machine Learning Research, 2004(5) : 913 - 939. 被引量:1
  • 10VIOLA P, JONES M J. Robust real time face detection [J].International Journal of Computer Vision, 2004, 57(2): 137- 154. 被引量:1

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部