摘要
提出用k错近似熵作为测量序列稳定性的度量指标,并将这一新的测试和NIST制定的测试标准中的其它测试相组合,对常用的多种连续混沌系统产生的伪随机序列进行了密码学特性分析,其中包括:Chen’s系统、三阶CNN、Lorenz系统。对不同混沌系统产生的混沌伪随机序列进行单比特频数测试、游程测试、离散傅立叶变换测试、近似熵测试、累计和测试以及序列稳定性测试,并对它们的伪随机特性进行了比较。实验结果表明,提出的指标能有效地鉴别不同序列之间的稳定性差异;Chen’s系统在三种系统中具有最好的稳定性和伪随机特性。
K-error approximate entropy is presented to measure the stability of chaotic sequences. It is combined with other tests in NIST's STS randomness test suite to analyze cryptographical properties of several chaotic pseudorandom sequences, including Chen's system, 3-order CNN and Lorenz system. Six tests, which are the monobit test, the runs test, the discrete Fourier transform test, the approximate entropy test, the cumulative sums test and the k-error approximate entropy test, are performed to compare pseudorandom properties of those chaotic sequences. Simulation results show that the presented k-error approximate entropy can distinguish the stability of different sequences; that Chen's system has the best pseudorandom properties and stability.
出处
《微计算机信息》
2009年第3期203-205,共3页
Control & Automation
基金
基金申请人:丘水生
混沌开关变换器机理及解决电源EMC问题新方案研究
基金颁发部门:国家自然科学基金委(60372004)
关键词
混沌
伪随机特性
稳定性
k错近似熵
chaos
pseudorandom properties
stability
k-error approximate entropy