期刊文献+

一类非线性扩散波方程的精确解

Exact solution of nonlinear dispersive wave equation
下载PDF
导出
摘要 论文利用EXP-函数展开法,再次研究了一类非线性扩散波方程,获得了几种指数函数展开式型精确解,在一些特殊的参数条件下,这些指数函数展开式类型的解可以化为各种孤子解,包括孤立波解和纽子波等解.其中,这些指数函数展开式型的解与现有文献中该方程的解的结构是完全不相同的,是一些新类型的精确解. In the paper, by using the EXP-function method, we studied a nonlinear dispersive wave equation again, we obtained some new types of exact solutions with expansion form of EXP-function. Under some special constants, these types of solutions with expansion form of EXP-function could be reduced to different kinds of soliton solutions including the solitary wave solutions and the kink wave solutions, etc. Where, these types of solutions with expansion form of EXP-function were different from those which were in the existing references, they were new types of exact solutions.
作者 李薇 陈德华
机构地区 红河学院数学系
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2009年第1期5-8,共4页 Journal of Anhui University(Natural Science Edition)
基金 云南省教育厅自然科学基金资助项目(06Y147A)
关键词 一类非线性扩散波方程 EXP-函数展开法 精确解 nonlinear dispersive wave equation EXP-function method exact solution
  • 相关文献

参考文献5

  • 1Henrik K. Stability of solitary waves for a nonlinearly dispersive equation [ J ]. Discrete and Continuous Dynamical Systems ,2004 (10) :709 - 717. 被引量:1
  • 2Yin Z. On the Cauchy problem for a nonlinearly dispersive wave equation[J]. J Nonl Math Phys,2003(10) :10-15. 被引量:1
  • 3Fuchssteiner B, Fokas. As symplectic structures, their Bachlund transformation and hereditary symmetries [ J ]. Physica, 1981 (4) :47 - 66. 被引量:1
  • 4Camassa R, Hohn D. An integrable shallow water equation with peaked solitons[ J]. Phys Rev Lett, 1993,71:1661 - 1664. 被引量:1
  • 5Camassa R, Holm D, Hyman J. A new intergrable shallow water equation[ J ]. Adv Appl Mech, 1994,31:1 -33. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部