期刊文献+

基于模拟退火的自适应差分演化算法研究 被引量:2

Research on Self-adaptive Differential Evolution Algorithm Based on Simulated Annealing
原文传递
导出
摘要 基于模拟退火的自适应差分演化算法。通过模拟退火的更新策略来增强全局搜索能力,并提出了新的自适应技术来选择学习策略、确定算法的关键参数。数值实验及与同类算法的比较研究表明了该算法的有效性和优越性。 According to the analysis for the two faults, this paper proposes a novel algorithm: self-adaptive differential evolution algorithm based on simulated annealing. With the aid of simulated annealing strategy, the proposed algorithm is able to improve the global search ability of conventional differential evolution algorithm. In the proposed algorithm, the choice of learning strategy and several critical control parameters are not required to be pre-specified. During evolution, the suitable learning strategy and parameters setting are gradually self-adapted according to the learning experience. Numerical experiments and comparative research expose the proposed algorithm as a competitive algorithm for the global optimization.
出处 《武汉理工大学学报》 CAS CSCD 北大核心 2009年第1期139-143,共5页 Journal of Wuhan University of Technology
基金 国家自然科学基金(60572015) 国家973重大基础研究专项(2004CCA02500)
关键词 差分演化算法 模拟退火算法 自适应技术 differential evolution algorithm simulated annealing algorithm self-adaptation
  • 相关文献

参考文献14

  • 1Store R, Price K. Differential Evolution-A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces[R]. Berkeley: ICSI, 1995. 被引量:1
  • 2Price K. Differential Evolution vs. the Functions of the 2nd ICEO[A]. Proc. of the 1997 IEEE International Conference on Evolutionary Computation[C]. Indianapolis, 1997 : 153-157. 被引量:1
  • 3Storn R, Price K. Minimizing the Real Functions of the ICEC' 96 Contest by Differential Evolution[A]. Proc. of the 1996 IEEE International Conference on Evolutionary Computation[C]. Nagoya, 1996: 842-844. 被引量:1
  • 4徐宗本..计算智能[M],2004.
  • 5胡中波.一类自适应的差分演化算法[J].孝感学院学报,2007,27(6):55-57. 被引量:1
  • 6胡中波,熊盛武,胡付高,苏清华.改进的差分演化算法及其在函数优化中的应用[J].武汉理工大学学报,2007,29(4):125-128. 被引量:11
  • 7Yan J Y, Ling Q, Sun D M. A Differential Evolution with Simulated Annealing Updating Method[A]. Proc. of the 5th International Conference on Machine Learning and Cybernetics[ C], Dalian, 2006: 2103-2106. 被引量:1
  • 8胡中波,熊盛武,苏清华.基于小生境的混合差分演化模拟退火算法[J].计算机工程与应用,2007,43(2):105-107. 被引量:15
  • 9Babu B V, Ashish M G. Multi-Objective Differential Evolution (MODE) Algorithm for Multi-Objective Optimization: Parametric Study on Benchmark Test Problems[J]. Journal on Future Engineering & Technology, 2007, 3 (1) : 47-59. 被引量:1
  • 10Babu B V. Improved Differential Evolution for Single- and Multi-Objective Optimization: MDE, MODE, NSDE, and MNSDE[J]. Advances in Computational Optimization and its Applications, 2007: 24-30. 被引量:1

二级参考文献23

  • 1冯毅,李利,高艳明,田树军.一种基于小生境的混合遗传退火算法[J].机械科学与技术,2004,23(12):1494-1498. 被引量:15
  • 2[1]Storn R,Price K.Differential Evolution-A Simple and Efficient Heuristic for Global Optimization over Continuous Space[J].Journal of Global Optimization,1997,11(4):341-359. 被引量:1
  • 3[2]Liu J,Lampinen J.On Setting the Control Paramter of the Differential Evolution Method[C].In Proceedings of the 8th International on Soft Computing,Brno CzechRepublic.2002:11-18. 被引量:1
  • 4[3]Gamperle R,Muler S D,Koumoutsakos P.A Parameter Study for Differential Evolution[C].In WSEAS NNAFSFS-EC 2002,Interlaken,Switedand,2002. 被引量:1
  • 5[4]Brest J,Zumer V,Maucec M S,et al.Self-Adaptive Differential Evolution Algorithm in Constrained RealParameter Optimization,In the 2006 IEEE Congresson Evolutionary Computation,Sheraton Vancouver Wall Centre Hotel,Vancouver,BC,Canada,Jul.1621,2006. 被引量:1
  • 6[5]Brest J,Boskovic B,Greiner S,et al.Performance Comparison of Self-Adaptive and Adaptive Differential Evohtion Algorithms[J],Soft Computing-A Fusion of Foundation,Methodologies and Applications,2007,11(7):617-629. 被引量:1
  • 7[6]Yah J Y,Ling Q,Sun D M.A Differential Evolutionwith Simulated Annealing Updating Method[C]In Proceeedings of the Fifth International on Machine Learning and Cybemetics,Dalian,2006. 被引量:1
  • 8Li M,Zeng M,Shi C Z,et al.Fiber Bragg grating distributed strain sensing:an adaptive simulated annealing algorithm approach[J].Optics & Laser Technology,2005,37(6):454-457. 被引量:1
  • 9Rachid C,Patrick S.Genetic and Nelder&Mead algorithms hybridized for a more accurate global optimization of continuous multi-minima functions[J].European Journal of Operational Research,2003,148 (2):335-348. 被引量:1
  • 10Price K.Dffferential evolution vs the functions of the 2nd ICEO[C]//Proc of the IEEE International Conference on Evolutionary Computation,1997. 被引量:1

共引文献19

同被引文献19

  • 1刘钊,康立山,蒋良孝,杨林权.用粒子群优化改进算法求解混合整数非线性规划问题[J].小型微型计算机系统,2005,26(6):991-994. 被引量:12
  • 2Sandgren E. Nonlinear Integer and Discrete Programming in Mechanical Design Optimization[ J ]. Mechanical Design, 1990, 112(2) : 223-229. 被引量:1
  • 3Chen J L, Tsao Y C. Optimal I)esign of Machine Elements Using Genetic Algorithms[J]. Chinese Society of Mechanical Engineers, 1993, 14(2) : 193-199. 被引量:1
  • 4Wu S J, Chow P T. Genetic Algorithms for Nonlinear Mixed Discrete-integer Optimization Problems via Meta-genetic Parameter Optimization[J]. Engineering Optimization, 1995, 24(2); 13%159. 被引量:1
  • 5Lampinen J, Zelinka I. Mixed Integer-discrete-continuous Optimization by Differential Evolution [ C]//International Mendel Conference on Soft Computing. Czech Republic, Bmo. IACS, 1999:71-76. 被引量:1
  • 6Gamperle R, Miller S D, Koumoutsakos P. A Parameter Study for Differential Evolution[J]. Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation, 2002: 293-298. 被引量:1
  • 7Hu Z B, Su Q H, Xiong S W. Self-adaptive Hybrid Differential with Simulated Annealing Algorithm for Numerical Optimization[C]//Proc Of the 2008 IEEE World Congress on Computational Intelligence. Hong Kong, 2008:1189-1194. 被引量:1
  • 8Chou T S, Yen K K, Luo J.Network intrusion detection de- sign using feature selection of soft computing paradigms[J]. International Journal of Computational Intelligence, 2008, 4 (3) : 196-208. 被引量:1
  • 9Hornga S J, Suc M Y, Chen Y H.A novel intrusion detec- tion system based on hierarchical clustering and support vector maehines[J].Expert Systems with Applications, 2011, 38(1):306-313. 被引量:1
  • 10Vapnik N.The nature of statistical learning theory[M].New York: Springer-Verlag, 1995. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部