期刊文献+

一种基于SVM的雷达目标识别算法 被引量:2

A SVM-based Radar Target Recognition Algorithm
原文传递
导出
摘要 针对目前支持向量机多类分类方法存在的缺点,文中对支持向量机的高斯核函数进行改进,并提出一种结合留一法和单一验证法的参数选择新方案。基于3种雷达目标的HRRP数据,设计了相应的预处理算法,利用改进的SVM分类法用于高分辨距离像的雷达目标识别。从实验目标姿态稳定性、训练集大小稳定性和抗噪能力三个方面验证改进SVM的稳健性。 To solve the problems and defects of existing methods in Support Vector Machine(SVM) multiclass classification, an improved Gaussian kernel in SVM is proposed and a new SVM model selection scheme combining Leave-One-Out method with One-Validation method is presented in this paper. Based on the High Resolution Range Profile(HRRP) of three-type target, a preprocessing method is designed, A classification algorithm for HRRP based on this improved SVM is applied. Finally, experimental results prove that the improved SVM classifier has better performance on target-aspect stability, training set-size stability and anti-noise ability than traditional SVM.
出处 《通信技术》 2009年第1期300-302,共3页 Communications Technology
关键词 支持向量机 高斯核函数 雷达目标识别 高分辨距离像 SVM: Gaussian kernel radar target recognition HRRP
  • 相关文献

参考文献5

  • 1Li H, Yang S. Using range profiles as feature vectors to identify aerospace object[J]. IEEE Trans on AP, 1993, 41 (3) :261-280. 被引量:1
  • 2Zyweck A, Bogner RE. Radar target classification of commercial aircraft[J]. IEEE Trans. on AES, 1996, 32(2): 589-606. 被引量:1
  • 3Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995. 被引量:1
  • 4李晓宇,张新峰,沈兰荪.支持向量机(SVM)的研究进展[J].测控技术,2006,25(5):7-12. 被引量:45
  • 5Kleinberg J M. Authoritative Source in a Hyperlinked Envionment[C]. In:Proc of the 9^th ACM-SIAM symposium on Discrete Algonithms, New York, 1998, New York :[s.n.],1998:668-677. 被引量:1

二级参考文献25

  • 1沈兰荪,王爱民,卫保国,王永刚,赵忠旭.图像分析技术在舌诊客观化中的应用[J].电子学报,2001,29(z1):1762-1765. 被引量:61
  • 2张金泽,单甘霖.模糊超球支持向量机[J].军械工程学院学报,2005,17(3):65-67. 被引量:4
  • 3陆阳,王海燕,田娜.组合核函数支持向量机在水中目标识别中的应用[J].声学技术,2005,24(3):144-147. 被引量:9
  • 4马永军,李孝忠,王希雷.基于模糊支持向量机和核方法的目标检测方法研究[J].天津科技大学学报,2005,20(3):29-32. 被引量:7
  • 5AYAT N E,CHERIET M,REMAKI L,et al.KMOD-a new support vector machine kernel with moderate decreasing for pattern recognition,application to digit image recognition[A].Proceedings of 6^th International Conference on Document Analysis and Recognition[C].Seattle,USA:IEEE,2001:1 215 -1 211. 被引量:1
  • 6AMARI S-I,WU S.An information-geometrical method for improving the performance of support vector machine classifier[A].Proceedings of 9^th International conference on artificial neural networks[C].Edinburgh,UK:IEEE,1999:85 -90. 被引量:1
  • 7Jeronimo Arenas-Gsrcia,Femando Perez-Cruz.Muli-class support vector machines:A new approach[A].Hong Kong:ICASSP,2003. 被引量:1
  • 8Schōlkopf B,Smoda A J.Learning with kernels[M].Cambridge,MA:MIT Press,2002. 被引量:1
  • 9Chew H G,Bogner R E,Lim C C.Duali-support vector machine with wirer rate and training size biasing[A].In:Proceedings of 26th IEEE ICASSP (International Conference on Acoustics,Speech,and Signal Processing) 2001[C].Salt Lake City,USA:IEEE,2001:1 269-1 272. 被引量:1
  • 10Sehōlkopf B,Plat J C,Shawe-Taylor J,et al.Estimating the support of a high-dimensional distribution[J].Neural Computation,2001,13(7):1 443-1 471. 被引量:1

共引文献44

同被引文献16

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部