期刊文献+

基于时间序列图挖掘的网络流量异常检测 被引量:9

Network Traffic Anomaly Detection Based on Data Mining in Time-series Graph
下载PDF
导出
摘要 网络流量异常检测要解决的核心问题之一是获得信息的全面性和流量信息描述的准确性。针对现有网络异常流量检测方法分析多时间序列的不足,提出了一种基于图挖掘的流量异常检测方法。该方法使用时间序列图准确、全面地描述用于流量异常检测的多时间序列的相互关系;通过对项集模式进行支持度计数,挖掘各种频繁项集模式,有利于对各种异常流量的有效检测;通过挖掘各项集之间的关系,引入了项集的权重系数,解决了流量异常检测的多时间序列相互关系的量化问题。仿真结果表明,该方法能有效地检测出网络流量异常,并且对DDos攻击的检测效果明显优于基于连续小波变换的检测方法。 Comprehensive collection and accurate description of traffic information are core problems in network traffic anomaly detection. Aiming at the lack of traffic anomaly detection in analyzing multi time series,we proposed a network traffic anomaly detection method based on graph mining. Our method accurately and completely described the relationship among nulti-time series which are used in traffic anomaly detection by time-series graph. By mean of the support count of the patterns, our method mined all the frequent patterns, which is conducive to detecting many kinds of abnormal traffic effectively, through mining the relationship among all pattern sets, our method introduced weight coefficients of the pattern sets, which is able to solve relationship quantification issues of multi-time series in traffic anomaly detection. The simulation results show that the proposed method can effectively detect the network traffic anomaly and achieves a higher accuracy than the based CWT (Continuous Wavelet Transform) method in term of DDos attacks detection.
出处 《计算机科学》 CSCD 北大核心 2009年第1期46-50,共5页 Computer Science
基金 国家自然科学基金(60572092) 教育部"新世纪优秀人才支持计划"(NCET-07-0148)资助
关键词 网络流量异常检测 多时间序列 图挖掘 Network traffic anomaly detection,Multi time series,Graph mining
  • 相关文献

参考文献13

  • 1Hussain A , Heidemann J , Papadopoulos C. A Framework for Classifying Denial of Service Attacks//Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications. Karlsruhe, Germany, 2003 被引量:1
  • 2Cheng C M, Kung H T, Tan K S. Use of Spectral Analysis in Defense Against Dos Attacks//Proceedings of IEEE GLOBECOM. 2002 被引量:1
  • 3Alarcon Aquino V, Barria J A. Anomaly Detection in Communication Networks Using Wavelets. IEEE Proc-Commun, 2001, 148(6) 被引量:1
  • 4Barford P, Kline J, Plonka D, et al. A Signal Analysis of Network Traffic Anomalies//Proc. of ACM SIGCOMM Internet Measurement Workshop. Marseilles, France, November 2002: 412-423 被引量:1
  • 5Gao Jun, Hu Guangmin, Yao Xingmiao. Anomaly Detection of Network Traffic Based on Wavelet Packet//APCC'06. Asia-Pacific Conference on Communications. 2006 被引量:1
  • 6Wenke L,Xiang D. Information-Theoretic Measures for Anomaly Detection//Proc. of IEEE Symposium on Security and Privacy. Oakland,CA,May 2001 : 130-143 被引量:1
  • 7Lakhina A, Crovella M, Diot C. Mining Anomalies Using Traffic Feature Distributions//Proc. of ACM SIGCOMM 2005. Philadelphia,Pennsylvania, USA, August 2005 : 9-20 被引量:1
  • 8http://www.apng. org/9thcamp/matbdfs.ppt 被引量:1
  • 9杨岳湘,王海龙,卢锡城.基于信息熵的大规模网络流量异常分类[J].计算机工程与科学,2007,29(2):40-43. 被引量:6
  • 10Noble C C, Cook D J. Graph based Anomaly Detection//SIGK-DD '03. Washington,DC,USA,August 2003 被引量:1

二级参考文献7

  • 1Lakhina A,Crovella M,Diot C.Diagnosing Network-Wide Traffic Anomalies[A].ACM SIGCOMM[C].2004. 被引量:1
  • 2Lakhina A,Crovella M,Diot C Mining Anomalies Using Traffic Feature Distributions[A].ACM SIGCOMM[C].2005. 被引量:1
  • 3Lakhina A,Crovella M,Diot C.Haracterization of Network-Wide Anomalies in Traffic Flows[R].Technical Report BUCS-2004-020,Boston University,2004. 被引量:1
  • 4余艳.基于信息熵的粗糙集在故障诊断中的应用研究:[硕士学位论文][D].长沙:湖南大学,2004. 被引量:1
  • 5Smith L I.A Tutorial on Principal Components Analysis[EB/OL].Http://csnet.Otago.Ac.Nz/cosc453/student_tutorials/Principal.Componets.Pdf,2002-02. 被引量:1
  • 6陈华,陈书海,张平,严卫东.K-means算法在遥感分类中的应用[J].红外与激光工程,2000,29(2):26-30. 被引量:26
  • 7向继,高能,荆继武.聚类算法在网络入侵检测中的应用[J].计算机工程,2003,29(16):48-49. 被引量:41

共引文献5

同被引文献58

引证文献9

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部