摘要
Minimization of the weighted nonlinear sum of squares of differences may be converted to the minimization of sum of squares. The Gauss-Newton method is recalled and the length of the step of the steepest descent method is determined by substituting the steepest descent direction in the Gauss-Newton formula. The existence of minimum is shown.
Minimization of the weighted nonlinear sum of squares of differences may be converted to the minimization of sum of squares. The Gauss-Newton method is recalled and the length of the step of the steepest descent method is determined by substituting the steepest descent direction in the Gauss-Newton formula. The existence of minimum is shown.