期刊文献+

WEIGHTED NONLINEAR REGRESSION

WEIGHTED NONLINEAR REGRESSION
下载PDF
导出
摘要 Minimization of the weighted nonlinear sum of squares of differences may be converted to the minimization of sum of squares. The Gauss-Newton method is recalled and the length of the step of the steepest descent method is determined by substituting the steepest descent direction in the Gauss-Newton formula. The existence of minimum is shown. Minimization of the weighted nonlinear sum of squares of differences may be converted to the minimization of sum of squares. The Gauss-Newton method is recalled and the length of the step of the steepest descent method is determined by substituting the steepest descent direction in the Gauss-Newton formula. The existence of minimum is shown.
作者 Josef Bukac
机构地区 Jaromer-Josefow
出处 《Analysis in Theory and Applications》 2008年第4期330-335,共6页 分析理论与应用(英文刊)
关键词 weighted sum of squares Gauss-Newton method steepest descent weighted sum of squares, Gauss-Newton method, steepest descent
  • 相关文献

参考文献5

  • 1Fletcher,R.Practical Methods of Optimization[]..1963 被引量:1
  • 2Nagel, G.,Wolff, W.Ein Verfahren zur Minimierung Einer Quadratsumme Nichtlinearer Funktionen[].Biometrische Zeitschrift.1974 被引量:1
  • 3J. E. Dennis,and R. B. Schnabel.Numerical Methods for Unconstrained Optimization and Nonlinear Equations[]..1983 被引量:1
  • 4Levenberg,K.A method for the solution of certain non-linear problems in least squares[].Quarterly Journal of Mechanics and Applied Mathematics.1944 被引量:1
  • 5Marquardt,D. W.An algorithm for least-squares estimation of nonlinear parameters[].Journal of the Society for Industrial and Applied Mathematics.1963 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部