摘要
The principle of the inertial navigation system(INS) with rotating inertial measurement unit (IMU) is analyzed. A new IMU is established to rotate round each axis in three directions. Then, the related error models for the designed system during rotating are deduced and the improved system is built. Finally, the performance simulation of the proposed system is provided. The simulation result indicates that the designed system can improve the accuracy of the roll and the pitch as well as heading by rotating three axes, thus guaranting the heading accuracy. Moreover, based on the principle of rotation at six different positions, such structure can carry out real-time calibration, and improve the system performance.
介绍了基于旋转惯性器件的惯性导航系统的工作原理。根据该方案的思想对捷联惯性导航系统加以改进,设计了可绕三轴旋转的IMU机构,建立了旋转机构误差模型。仿真结果表明,该机构符合最初对它的设计要求,即提高了导航系统关于横滚、俯仰姿态的精度,同时也达到了通过三轴旋转提高航向角跟踪精度的目的,故弥补了目前研究的旋转惯导系统无法调制航向角精度的缺陷。此外,这该绕三轴旋转的惯导系统还可以根据六位置旋转法原理实现实时标定功能,从而进一步改善系统性能。
基金
Supported by the National Natural Science Foundation of China(60702003)~~