期刊文献+

SAR图像的NSCT域自适应收缩相干斑抑制 被引量:1

SAR Image Denoising Algorithm Based on Adaptive Shrinkage in Nonsubsampled Contourlet Domain
下载PDF
导出
摘要 提出了一种基于Nonsubsampled Contourlet(NSCT)变换域自适应收缩的SAR图像相干斑抑制算法。首先将SAR图像分解至NSCT域,其次对NSCT系数进行Pizurica自适应收缩。利用NSCT变换的良好的方向选择性及平移不变性,同时结合Pizurica自适应收缩的方向空间相关性及其局部噪声度量,自适应地得到各方向的高频子带系数对应的收缩因子,修正NSCT系数,最终将修正后的子带系数通过NSCT逆变换获得经过斑点噪声抑制的图像。实验结果表明,与小波域软阈值和Contourlet域软阈值算法相比,该算法在有效抑制SAR图像斑点噪声的同时能更好、更清晰地保持图像的边缘细节特征。 A new algorithm for SAR image denoising based on adaptive shrinkage in Nonsubsampled Contourlet Domain, is presented . The nonsubsampled contourlet coefficients of SAR images are reduced by the corresponding Pizurica adaptive shrinkage factor. The Pizurica shrinkage factor takes into account not only the local noise measure ,but also prior directional spatial consistency, and combines the shift-invariance and direction selectivity of the nonsubsampled contourlet transform. The shrinkage factor is assembled at each high frequency subband to modify the nonsubsampled contourlet coefficients. Inverse nonsubsampled contourlet transform is performed on the updated coefficients to get the denoised image. Compared with the denoising methods based on wavelet soft-threshold and contourlet soft-threshold ,the proposed algorithm can reduce speckle noise more effectively while preserving the edges of the SAR images.
出处 《中国图象图形学报》 CSCD 北大核心 2009年第1期8-13,共6页 Journal of Image and Graphics
基金 江苏省自然科学基金项目(BK2001047) 航空科学基金项目(04D52032)
关键词 SAR图像处理相干斑抑制 Nonsubsampled CONTOURLET变换 自适应收缩 SAR image processing, speckle noise suppression, Nonsubsampled Contourlet transform, adaptive shrinkage
  • 相关文献

参考文献17

  • 1Arthur L C, Zhou J P, Minh N D. The nonsubsampled contourlet transform: theory, design, and applications [ J]. IEEE Transactions on Images Processing, 2006, 15(10) : 3089-3101. 被引量:1
  • 2张旭,罗建书.基于自适应收缩因子的SAR图像去噪[J].武汉大学学报(工学版),2003,36(3):102-104. 被引量:5
  • 3Minh N D, Vettedi M. Contourlets: A directional muhiresolution image representation [ A ]. In: Proceedings of IEEE International Conferences of Image Processing [ C ] , New York, USA, 2002: 357-360. 被引量:1
  • 4Minh N D, Vetterli M. The contourlet transform: An efficient directional multiresolution image representation [ J ] . IEEE Transactions on Images Processing, 2005, 14(12) : 2091-2106. 被引量:1
  • 5Zhou J P, Arthur L C, Minh N D. Nonsubsampled contourlet transform: construction and application in enhancement [ A]. In.. Proceedings of IEEE International Conferences of Image Processing [ C ] , Genoa, Italy, 2005 : 469-472. 被引量:1
  • 6Bamberger R H, Smith M J. A filter bank for the directional decomposition of images: theory and design[J].IEEE Transactions on Signal Processing, 1992, 40(4) : 882-893. 被引量:1
  • 7Khan M A, Khan M K. Coronary angiogram image enhancement using decimation-free directional filter banks[ A ]. In : Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. [C], Montreal, QC, Canada, 2004: 441-444. 被引量:1
  • 8Pizurica A, Philips W, Lemahieu I, et al. Image de-noising in the wavelet domain using prior spatial constrains[A]. In: Proceedings of the IEE International Conference on Image Processing and its Application [ C ] , Manchester, UK, 1999 : 216-219. 被引量:1
  • 9Rosiles J G. Image and Texture Analysis using Biorthogonal Angular Fiher Banks[ D]. Atlanta, USA: School of Electrical and Computer Engineering, 2004. 被引量:1
  • 10孙延奎编著..小波分析及其应用[M].北京:机械工业出版社,2005:285.

二级参考文献14

  • 1Chang S G, Yu B, Vetterli M. Spatially adaptive wavelet thresholding with context modelling for image denoising [J]. IEEE Trans. on Image Proc,2000, 9(9): 1522--1531. 被引量:1
  • 2Xu Y, Weaver J B, Healy D M, Lu J. Wavelet transform domain filters: a spatially selective noise filtration technique [J]. IEEE Trans. on Image Proc, 1994, 3(6): 747--758. 被引量:1
  • 3Pizurica A, Philips W, Lemahieu I, Acheroy M. Image denoising in the wavelet domain using prior spatial constraints [A]. In: Proc. 7^th Int. Conf. Imageprocessing Applications, Manchester, U. K., July 1999. 216--219. 被引量:1
  • 4Lee J S. Speckle suppression and analysis for synthetic aperture radar images [J]. Opt. Eng. , 1986,25(5) : 636--643. 被引量:1
  • 5Donoho D L. De-noising by soft-thresholding [J].IEEE Trans. on Information Theory, 1995, 41(3):613--627. 被引量:1
  • 6Mallat S. A theory for multi-resolution signal decomposition: The wavelet representation [J]. IEEE Trans. on Pattern Anal. and Machine Intel. , 1989,11(7): 674--693. 被引量:1
  • 7Mallat S. A wavelet tour of signal processing [M].Academic Press, 1998. 被引量:1
  • 8MALLAT S.A Wavelet Tour of Signal Processing[M].Orlando:Academic Press,1999. 被引量:1
  • 9PENNEC E L,MALLAT S.Sparse Geometric Image Representation with Bandelets[J].IEEE Trans Image Processing (S1057-7149),2005,14(4):423-438. 被引量:1
  • 10CANDES E J,DONOHO D L.New Tight Frames of Curvelets and Optimal Representations of Objects with Piecewise C Singularities[J].Commun.Pure Appl Math(S 0010-3640),2004,57(2):219-266. 被引量:1

共引文献6

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部