期刊文献+

Dechlorination mechanism of 2,4-dichlorophenol by Ni/Fe nanoparticles in the presence of humic acid 被引量:1

Dechlorination mechanism of 2,4-dichlorophenol by Ni/Fe nanoparticles in the presence of humic acid
原文传递
导出
摘要 To understand the feasibility of its application to the in situ remediation of contaminated groundwater,the dechlori-nation of 2,4-dichlorophenol (2,4-DCP) by Ni/Fe nanoparticles in the presence of humic acid (HA) was investigated.We found that,as high performance liquid chromatography (HPLC) was used,the 2,4-DCP was first quickly reduced to o-chlorophenol (o-CP) and p-chlorophenol (p-CP),and then reduced to phenol as the final product.Our experimental results indicated that HA had an adverse effect on the dechlorination of 2,4-DCP by Ni/Fe nanoparticles,as the HA concentration increased,the removal rate decreased evidently.It also demonstrated that 2,4-DCP was reduced more easily to o-CP than to p-CP,and that the sequence of the tendency in dechlorination of intermediates was p-CP>o-CP.Transmission electron microscope (TEM) showed that HA could act as an adsorbate to compete reactive sites on the surface of Ni/Fe nanoparticles to decrease the dechlorination rate.Also we con-cluded that the dechlorination reaction of 2,4-DCP over Ni/Fe nanoparticles progressed through catalytic reductive dechlorination. To understand the feasibility of its application to the in situ remediation of contaminated groundwater, the dechlorination of 2,4-dichlorophenol (2,4-DCP) by Ni/Fe nanoparticles in the presence of humic acid (HA) was investigated. We found that, as high performance liquid chromatography (HPLC) was used, the 2,4-DCP was first quickly reduced to o-chlorophenol (o-CP) andp-chlorophenol (p-CP), and then reduced to phenol as the final product. Our experimental results indicated that HA had an adverse effect on the dechlorination of 2,4-DCP by Ni/Fe nanoparticles, as the HA concentration increased, the removal rate decreased evidently. It also demonstrated that 2,4-DCP was reduced more easily to o-CP than to p-CP, and that the sequence of the tendency in dechlorination of intermediates was p-CP〉o-CP. Transmission electron microscope (TEM) showed that HA could act as an adsorbate to compete reactive sites on the surface of Ni/Fe nanoparticles to decrease the dechlorination rate. Also we concluded that the dechlorination reaction of 2,4-DCP over Ni/Fe nanoparticles progressed through catalytic reductive dechlorination.
出处 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第1期121-126,共6页 浙江大学学报(英文版)A辑(应用物理与工程)
基金 Project supported by the National Natural Science Foundation of China(No.20407015) the Program for New Century Excellent Talents in University(No.NCET-06-0525),China
关键词 DECHLORINATION Ni/Fe nanoparticles 2 4-dichlorophenol (2 4-DCP) Humic acid (HA) 水污染 治理 有毒化学品 水体
  • 相关文献

参考文献1

同被引文献7

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部