摘要
Somali Jet changes will influence the variability of Asian monsoon and climate. How would Somali Jet changes respond to the global warming in the future climate? To address this question, we first evaluate the ability of IPCC-AR4 climate models and perform the 20th century climate in coupled models (20C3M) experiments to reproduce the observational features of the low level Somali Jet in JJA (June-July-August) for the period 1976 1999. Then, we project and discuss the changes of Somali Jet under the climate change of Scenario A2 (SRESA2) for the period 2005 2099. The results show that 18 IPCC-AR4 models have performed better in describing the climatological features of Somali Jet in the present climate simulations. Analysis of Somali Jet intensity changes from the multi-model ensemble results for the period 2005-2099 shows a weakened Somali Jet in the early 21st century (2010-2040), the strongest Somali Jet in the middle 21st century (2050 2060), as well as the weakest Somali Jet at the end of the 21st century (2070-2090). Compared with the period 1976-1999, the intensity of Somali Jet is weakening in general, and it becomes the weakest at the end of the 21st century. The results also suggest that the relationship between the intensity of Somali Jet in JJA and the increment of global mean surface air temperature is nonlinear, which is reflected differently among the models, suggesting the uncertainty of the IPCC-AR4 models. Considering the important role of Somali Jet in the Indian monsoon and East Asian monsoon and climate of China, the variability of Somali Jet and its evolvement under the present climate or future climate changes need to be further clarified.
Somali Jet changes will influence the variability of Asian monsoon and climate. How would Somali Jet changes respond to the global warming in the future climate? To address this question, we first evaluate the ability of IPCC-AR4 climate models and perform the 20th century climate in coupled models (20C3M) experiments to reproduce the observational features of the low level Somali Jet in JJA (June-July-August) for the period 1976 1999. Then, we project and discuss the changes of Somali Jet under the climate change of Scenario A2 (SRESA2) for the period 2005 2099. The results show that 18 IPCC-AR4 models have performed better in describing the climatological features of Somali Jet in the present climate simulations. Analysis of Somali Jet intensity changes from the multi-model ensemble results for the period 2005-2099 shows a weakened Somali Jet in the early 21st century (2010-2040), the strongest Somali Jet in the middle 21st century (2050 2060), as well as the weakest Somali Jet at the end of the 21st century (2070-2090). Compared with the period 1976-1999, the intensity of Somali Jet is weakening in general, and it becomes the weakest at the end of the 21st century. The results also suggest that the relationship between the intensity of Somali Jet in JJA and the increment of global mean surface air temperature is nonlinear, which is reflected differently among the models, suggesting the uncertainty of the IPCC-AR4 models. Considering the important role of Somali Jet in the Indian monsoon and East Asian monsoon and climate of China, the variability of Somali Jet and its evolvement under the present climate or future climate changes need to be further clarified.
基金
Supported by the Basic Research Development Program of China (973 Program) under Grant No.2009CB421406
the Research Fund for excellent Ph.D dissertations in Chinese Academy of Sciences
the National Natural Science Foundation of China under Grant No.40523001.