期刊文献+

纹理特征辅助遥感影像分类技术的探讨 被引量:6

The Research in Assistant Classification of Remote Sensing Images by Texture Feature
下载PDF
导出
摘要 随着卫星遥感影像分辨率的不断提高,人们希望从遥感图像中获得更多有用的数据和信息,所以遥感影像的分类变得尤为重要。但是基于光谱特征的影像分类精度过低,不能满足生产的需要,所以研究利用其他辅助手段来提高遥感影像的分类成为未来发展的一个重要方向。本文研究了利用灰度共生矩阵提取纹理特征的方法并对利用纹理特征影像辅助光谱特征分类的方法进行了研究。实验结果表明,纹理特征辅助光谱特征分类能够提高遥感影像分类的准确性和精度。 With the development of high resolution remote sensing satellite image, people hoped that obtains more useful data and the information from the remote sensing images. So the classification of remote sensing images becomes especially important. But the accuracy based on the spectral feature of the remote images classification is too low and could not meet the needs of production. So using other means to assistant and to improve the classification of remote sensing images become an important development direction. The texture feature images are extracted by the gray level co - occurrence matrix and the classifications are carried out by combined the texture features with the spectral features is researched in this paper. The test results show that the assistant classification as the paper mentioned could increase the classification veracity and accuracy of remote sensing images.
出处 《测绘与空间地理信息》 2008年第6期82-85,共4页 Geomatics & Spatial Information Technology
关键词 遥感 辅助分类 纹理特征 灰度共生矩阵 Remote Sensing assistant classification texture feature Gray Level Co - occurrence Matrix
  • 相关文献

参考文献7

二级参考文献58

  • 1游代安,蒋定华,余旭初.GIS辅助下的Bayes法遥感影像分类[J].测绘科学技术学报,2001,22(2):113-117. 被引量:24
  • 2郭德军,宋蛰存.基于灰度共生矩阵的纹理图像分类研究[J].林业机械与木工设备,2005,33(7):21-23. 被引量:55
  • 3黎夏.形状信息的提取与计算机自动分类[J].环境遥感,1995,10(4):279-287. 被引量:46
  • 4朱述龙 张占睦.遥感图像获取与分析[M].北京:科学出版社,2000,4.. 被引量:72
  • 5周成虎 骆剑承 等.遥感影像地学理解与分析[M].北京:科学出版社,2001.. 被引量:38
  • 6闻新 周露.MATLAB神经网络应用设计[M].北京:科学出版社,2001.. 被引量:149
  • 7Salu and Y, Tilton J. Classification of Multi - spectral Image Data by the Binary Biamond Neural Net works and by Nonparametric,Pixel - by - Pixel Methods [ J ]. IEEE Trans. On Geoscience and Remote Sensing, 1993,31 (3) :606 - 617. 被引量:1
  • 8Yamazaki T, Gingras D. Image Classification Using Spectral and Information Based on MAR Models [ J ]. IEEE Trans. on Image Processing, 1995,14 (9): 1333 - 1339. 被引量:1
  • 9James J, Timothy J, et al. An improved hybrid clustering algorithm for natural scienes [ J ]. IEEE Transaction on Geoscience and Remote Sensing,2000,38(2) :1016 - 1032. 被引量:1
  • 10SanRen H, Cheinlchang I. A generalized orthogonalalsub space projection approach to unsupervised multi - spectral image classification [ J]. IEEE Transaction on Geoscience and Remote Sensing, 2000,38(6) :2515 -2528. 被引量:1

共引文献292

同被引文献57

引证文献6

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部