期刊文献+

矩形腔体中Rayleigh-Benard对流结构的分析 被引量:7

An Analysis of the Structure of Rayleigh-Benard Convection in a Rectangular Channel
下载PDF
导出
摘要 通过对二维流体力学基本方程的数值摸拟,讨论了在二维矩形腔体中,不同条件与Rayleigh-Benard(RB)对流耦合作用的结构图案和特性。在分析了RB对流结构的基础上,分别对比分析了水平流及脉冲流与RB对流耦合作用的结构,并得出了其规律。RB对流系统为定常流动,对流轨道具有空间周期性。当RB对流与水平来流耦合作用时,系统为非定常流动,对流结构既表现空间周期性,同时也表现时间周期性。当外加来流的大小呈周期性变化时,此时系统流动的形式与外加来流的周期密切相关。 This paper discusses the structural patterns and features of the convection coupling functions of different conditions and Rayleigh-Benard (RB) via the numerical simulation of basic equation of two-dim entional fluid mechanics in two-dimentional rectangular cavity body. Based on the analysis of RB convection structure, the contrast analysis is made of the coupling function structure of the level flow and pulse flow and RB convection respectively with its laws obtained. RB convection system is the steady and constant flow, and the convection track is of space periodicity. When RB convection couples with the lateral flow, the system is the unsteady and constant flow so that the convection structure displays both space and time periodicities. When the magnitude of he additional lateral flow appears to have the periodic changes, the form of the system flow pattern is closely related with the additional lateral flow periodicity.
出处 《西安理工大学学报》 CAS 2008年第4期484-489,共6页 Journal of Xi'an University of Technology
基金 教育部留学回国人员基金资助项目(220542) 陕西省教育厅科研基金资助项目(05JK271) 西安理工大学校科学研究基金资助项目(210532)
关键词 数值模拟 Rayleigh—Benard对流 对流结构 唯象方法 numerical simulation Rayleigh-Benard convection convection structure phenomenological method
  • 相关文献

参考文献8

二级参考文献19

  • 1[1]Kato Y and Fujimura K 2000 Phys. Rev. E 62 601 被引量:1
  • 2[2]Bajaj K M S, Liu J, Naberhuis B and Ahlers G 1998 Phys. Rev.Lett. 81 806 被引量:1
  • 3[3]Daniels K E, Plapp B B and Bodenschatz E 2000 Phys. Rev. Lett.84 5320 被引量:1
  • 4[4]Platten J K and Legros J C 1984 Convection in Liquids (Berlin:Springer) 被引量:1
  • 5[5]Ouazzani M T, Platten J K and Mojtabi A 1990 Int. J. Heat Mass Transfer 33 1417 被引量:1
  • 6[6]Brand H R, Ahlers H R and Deissler R J 1991 Phys. Rev. A 434262 被引量:1
  • 7[8]Zhan J M and Li Y S 2003 Chin. Phys. 12 60 被引量:1
  • 8[9]Niemela J J, Ahlers G and Cannel D S 1990 Phys. Rev. Lett. 641365 被引量:1
  • 9[10]Cross M C and Hohenberg P C 1993 Rev. Mod. Phys. 6S 851 被引量:1
  • 10[11]Jung C, Lucke M and Buchel P 1996 Phys. Rev. E 54 1510 被引量:1

共引文献52

同被引文献60

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部