期刊文献+

二阶双曲型方程的C^0-连续一次有限元法 被引量:3

C^0-Continuous Time Stepping Linear Finite Element Method for Second Order Linear Hyperbolic Equations
下载PDF
导出
摘要 对于二阶常微分方程初值问题,构造了C0-连续一次有限元法计算格式,通过直接计算的方法证明了误差估计,并利用数值实验验证了理论分析结果.对于二阶波动方程,构造了C0一次有限元法的计算格式,证明了解的存在惟一性,利用数值实验验证了该方法的有效性. This paper proposed a C^0-continuous time stepping linear finite element method to solve initialvalue problems for the second order scalar linear ordinary differential equation. Some error analysis results were proved by the direct computation. The numerical results coincide with the theoretical estimates. Furthermore, this method was extended to linear wave equations in two dimension, and some numerical tests were included to show the computational performance of the method.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2008年第12期2065-2069,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(10771138)
关键词 C^0-连续一次有限元 常微分方程 波动方程 误差估计 C^0-continuous FEM ordinary differential equation wave equation error analysis
  • 相关文献

参考文献7

  • 1Larsson S, Thomfe V. Partial differential equations with numerical methods[M]. Berlin:Springer-Verlag, 2003. 被引量:1
  • 2陈传淼,谢资清著..非线性微分方程多解计算的搜索延拓法[M].北京:科学出版社,2005:204.
  • 3Delfour M, Hager W, Trochu F. Discontinuous Galerkin methods for ordinary differential equations [J]. Mathematics of Computation, 1981,36:455-473. 被引量:1
  • 4肖春霞,陈传淼.二阶常微分方程初值问题C^0有限元的超收敛[J].数学理论与应用,2002,22(1):25-27. 被引量:2
  • 5Adams R A, Fournier J. Sobolev spaces[M]. 2nd. ed. New York: Academic Press,2003. 被引量:1
  • 6Johnson C. Discontinuous Galerkin finite element methods for second order hyperbolic problems [J]. Computer Methods in Applied Mechanics and Engineering, 1993,107 : 117-129. 被引量:1
  • 7Brenner S C, Scott L R. The mathematical theory of finite element methods [M]. 2nd. ed. Berlin-New York : Springer-Verlag, 2002. 被引量:1

二级参考文献4

共引文献1

同被引文献20

  • 1Larsson S,Thomee V.Partial Differential Equations with Numerical Methods[M].Berlin: Springer-Verlag,2003. 被引量:1
  • 2Lai J,Huang J,Shi Z.Vibration analysis for elastic multi-beam structures by the C-0-continuous time-stepping finite element method[J].Int.J.Numer.Meth.Biomed.Engng.,2010,26(2): 205-233. 被引量:1
  • 3Hulbert G.Time finite element methods for structural dynamics[J].Int.J.Numer.Meth. Eng.,1992,33(2):307-331. 被引量:1
  • 4Thomee V.Galerkin Finite Element Methods for Parabolic Problems[M].2nd ed.Berlin: Springer-Verlag,2006. 被引量:1
  • 5Akrivis G,Makridakis C,Nochetto R H.Galerkin and Runge-Kutta methods:unified formulation, a posteriori error estimates and nodal superconvergence[J].Numer.Math.,2011,118(3): 429-456. 被引量:1
  • 6Adams R A,Fournier J.Sobolev Spaces[M].2nd ed.New York:Academic Press,2003. 被引量:1
  • 7Edwards C H,Penney D E.Elementary Differential Equations[M].6th ed.New Jersey: Prentice Hall,2008. 被引量:1
  • 8Quarteroni A,Valli A.Numerical Approximation of Partial Differential Equations[M].Berlin: Springer-Verlag,1994. 被引量:1
  • 9Brenner S C,Scott L R.The Mathematical Theory of Finite Element Methods[M].3rd ed. Berlin:Springer-Verlag,2008. 被引量:1
  • 10Adjerid S,Temimi H.A discontinuous Galerkin method for higher-order ordinary differential equations[J].Comput.Methods Appl.Mech.Engrg.,2007,197(1-4):202-218. 被引量:1

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部