摘要
利用插点方法,研究图的H-性,给出了k-连通图是哈密尔顿的充分条件:设G是k-连通图(k≥2),若对于每个Y∈Ik+1(G*),在G中,有σb(Y)=sum from i=o to k(|N(Yi)|>/(b+k)/2(n(Y)-1)+μ((b(2k-2b+1))/2-1) ,则G是哈密尔顿图.
The technique of the vertex insertion is used to study the hamiltonicity of graphs. A new sufficient condition that k-connected graphs to be hamiltonian is given as: Let G be a k-connected graph with k≥2. If
σb(Y)=∑i=0^k|N(Yi)|〉b+k/2(n(Y)-1)+μ(b(2k-b+1)/2-1).
in G for each Y ∈ Ik+1 ( G^* ) , then G is hamihonian.
出处
《南京师大学报(自然科学版)》
CAS
CSCD
北大核心
2008年第4期21-25,共5页
Journal of Nanjing Normal University(Natural Science Edition)
关键词
哈密尔顿性
邻域并
插点
部分平方图
hamiltonicity, neighborhood union, vertex insertion, partially square graph