期刊文献+

带时滞复金兹堡-朗道方程常数平衡解的渐近性态

Asymptotic Behavior for Constant Equilibria for Ginzburg-Landau Equation With Delay
下载PDF
导出
摘要 讨论了具有时滞的复金兹堡-朗道方程的渐进性态.当参数满足一定的条件时,得到了复金兹堡-朗道方程具有第一边界条件时零解的线性和非线性稳定性及不稳定性;当参数和时滞满足一定的条件时,得到了复金兹堡-朗道方程具有第二边界条件时常数平衡解的线性化方程的渐进性态. The asymptotic behavior for Complex Ginzburg-Landau equation with delay is discussed. Linearized and nonlinear stability of zero for Complex Ginzburg-Landau equation with first boundary condition under some conditions on the parameters are obtained ; also asymptotic behavior of constant solutions for Complex Ginzburg-Landau equation with second boundary condition under some conditions on the parameters and delay are obtained.
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2008年第4期14-20,共7页 Journal of Nanjing Normal University(Natural Science Edition)
基金 国家自然科学基金(10571087) 教育部博士点专项基金(200503129001) 江苏省自然科学基金(BK2006523) 南京师范大学青年教师奖奖励计划资助项目
关键词 复金兹堡-朗道方程 延迟 稳定性 渐近性态 Complex Ginzburg-Landau equation, delay, stability, asymptotic behavior
  • 相关文献

二级参考文献23

  • 1Schechter,M.,Spectra of partial differential operators [M],American Elsevier Publishing Company,INC.-New York,1971. 被引量:1
  • 2Elgin,J.N.& Wu,X.S.,Stability of cellular states of the Kuramoto-Sivashinsky equation [J],SIAM J.Appl.Math.,56:6(1996),1621-1638. 被引量:1
  • 3Lan,Y.T.,The "cocoon" bifurcations in three-dimensional systems with two fixed points [J],Internat.J.Bifur.Chaos Appl.Sci.Engrg.,2:3(1992),543-558. 被引量:1
  • 4Feudel,F.,Feudel,U.& Brandenburg,A.,On the Bifurcation phenomena of the Kuramoto-Sivashinsky equation [J],Internat.J.Bifur.Chaos Appl.Sci.Engrg.,3:5(1993),1299-1303. 被引量:1
  • 5Kukavica,I.,Oscillations of solutions of the Kuramoto-Sivashinsky equation [J],Physica D,76:4(1994),369-374. 被引量:1
  • 6Dawson,S.P.& Mancho,A.M.,Collections of heteroclinic cycles in the Kuramoto-Sivashinsky equation [J],Physica D,100:3-4(1997),231-256. 被引量:1
  • 7Amdjadi,F.,Aston,P.J.& Plechac,P.,Symmetry breaking Hopf bifurcations in equations with 0(2)symmetry with application to the Kuramoto-Sivashinsky equation [J],J.Comput.Phys.,131:1(1997),181-192. 被引量:1
  • 8Tadmor,E.,The well-posedness of the Kuramoto-Sivashinsky equation [J],SIAM J.Math.Anal.,17:4(1986),884-893. 被引量:1
  • 9Goldstein,J.A.,Semigroups of linear operators and applications [M],Oxford University Press,New York,1985. 被引量:1
  • 10Shatah,J.& Strauss,W.,Spectral condition for instability [J],Contemporary Mathematics,255(2000),189-198. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部