期刊文献+

柱塞泵油膜压力分析的高效有限单元法 被引量:1

Efficient FEM Approach for Pressure Analysis of Oil Film in a Piston Pump
下载PDF
导出
摘要 利用有限单元法,数值分析轴向柱塞泵缝隙高度可变时阀门板上油膜的压力分布.缝隙中油压变化的确定,通常是应用Pasynkow润滑理论中的Reynolds方程.使用基于有限单元法的自编程序,数值地求解该方程.为了提高结果的精度,基于解的残差估计,应用了加密的自适应网格.给出了依赖于泵的几何条件和工作参数的计算结果. Numerical analysis of pressure distribution of oil film on the valve plate in variable height gap of an axial piston pump is concerned. The analysis employs the finite element method. For determination of oil pressure variations in the gap the Reynolds equation, commonly applied in the theory of lubrication by Pasynkov, was applied. The equation was solved numerically with the use of self-developed program based on finite element method. In order to obtain high accuracy of the results an adaptive mesh refinement based on residual esthnations of solution errors was applied. The calculation results were represented as dependent on the geometric and working parameters of the pump.
出处 《应用数学和力学》 CSCD 北大核心 2009年第1期51-63,共13页 Applied Mathematics and Mechanics
关键词 缝隙高度可变 压力分布模拟 自适应有限单元法 pump variable height gap pressure distribution modeling adaptive finite element method
  • 相关文献

参考文献14

  • 1Osiecld A. Hydrostatic Machine Drive[M]. Warsaw: Scientific-Technical Publishing House, 1998. ( in Polish) 被引量:1
  • 2Rakowski J, Stryczek S. Dynamic measurement of gap width in valve of a multi-piston axial pump [J]. Control and Hydraulic Drive, 1981, 3:7-9. (in Polish) 被引量:1
  • 3Stryczek S. Hydrostatic Drivel [M]. Vol 1. Warsaw:Scientific-Technical Publishing House, 1995. (in Polish) 被引量:1
  • 4Jang D S. Loss analysis in axial piston units[D] .PhD Disstertation. RWTH Aachen, 1997. (in German) 被引量:1
  • 5Pasynkow R M, Poswianski W S. Numerical calculation of Reynolds equation taking into account variable fluid viscosity ( in reference to valve plate) [ J]. Machine Construction Review, 1993,9:26- 29. (in Russian) 被引量:1
  • 6Ivantysyn J, Ivantysynova M. Hydrostatic Pumps and Motors[ M]. New Delhi: Akademia Books International, 2001. 被引量:1
  • 7Zienkiewicz O C, Morgan K. Finite Elements and Approximation[ M]. New York: John Wiley & Sons, 1983. 被引量:1
  • 8Zienkiewicz O C, Taylor R L. The Finite Element Method [M]. Oxford: Butterworth-Heinemann, 2000. 被引量:1
  • 9Ainsworth M, Oden J. A Posteriori Error Estimation in Finite Element Analysis [ M]. New York: John Wiley & Sons, 2000. 被引量:1
  • 10Stewart J R, Hughes T J R. A tutorial in elementary finite element error analysis: a systematic presentation of a priori and a posteriori error estimates[J]. Computational Methods in Applied Mechanical Engineering, 1998,158(1/2) : 1-22. 被引量:1

同被引文献4

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部