期刊文献+

双层规划问题基于对偶理论的遗传算法

A Genetic Algorithm Based on the Duality Theory for Bilevel Programming Problems
下载PDF
导出
摘要 针对下层为线性规划的非线性双层规划问题,提出了一种基于下层对偶理论的遗传算法。首先利用下层对偶问题可行域的极点对上层变量的取值域进行划分,使得每一个划分区域对应一个极点。根据原-对偶问题最优解的关系,确定每个划分区域对应的下层最优解。其次利用罚函数方法处理了上层约束,设计了一个依赖于种群变化的动态罚因子。对20个测试问题的数值结果表明,所提出的算法是可行有效的。 For nonlinear bilevel programming problems in which the follower' s programming is linear in both xandy, a genetic algorithm based on the duality theory of the follower's problem is proposed. First, the definition domain of leader' s variables is divided into several sub-regions according to the extreme points of the feasible region of the follower's dual problem such that each divided sub-region corresponds to an extreme point. As a result, the follower' s optimal solutions corresponding to each divided sub-region can be gotten by using the relation between the prime-dual optimal solutions. Then, an adaptive parameter is given when the penalty method is used to deal with the leader' s constraints. The numerical results on 20 test problems illustrate that the proposed algorithm is feasible and efficient.
出处 《运筹与管理》 CSCD 2008年第6期6-10,共5页 Operations Research and Management Science
关键词 非线性双层规划 遗传算法 对偶理论 极点 最优解 nonlinear bilevel programming genetic algorithm duality theory extreme points optimal solutions
  • 相关文献

参考文献15

  • 1Bard J F. Practical blevel optimization[ M]. The Netherlands: Kluwer Academic Publishers, 1998. 被引量:1
  • 2Colson B, Marcotte P, Savard G. Bilevel programming: a survey [ J ]. A Quarterly Journal of Operations Research (4OR), 2005, 3(2): 87-107. 被引量:1
  • 3de Saboia C H M, Campelo M, Scheimberg S. A computational study of global algorithms for linear bilevel programming[ J]. Numerical Algorithms, 2004, 35 (2-4) : 155-173. 被引量:1
  • 4赵茂先,高自友.一种混合整数双层线性规划的全局优化方法[J].系统工程理论与实践,2005,25(7):113-116. 被引量:14
  • 5Wang Guangmin. Genetic algorithms for solving linear bilevel programming[ A]. Shen Hong, Nakano K. Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT' 05 )[ C ]. Los Alamitos, CA: IEEE Computer Society Press, 2005. 920-924. 被引量:1
  • 6Faisca N, Dua V, Rustem B,et al. Parametric global optimization for bilevel programming[ J]. Journal of Global Optimization, 2007, 38(4) : 609-623. 被引量:1
  • 7Muu L D, Quy N V. A global optimization method for solving convex quadratic bilevel programming problems[J]. Journal of Global Optimization, 2003, 26(2) : 199-219. 被引量:1
  • 8郑丕谔,刘国宏,李瑞波,赵玉超.基于递阶优化算法的一类两层规划问题的解法[J].系统工程与电子技术,2005,27(4):662-665. 被引量:5
  • 9Liu G S, Han J Y, Zhang J Z. Exact penally functions for convex bilevel programming problems[ J]. J. Optimization Theory and Applications, 2001, 110(3) : 621-643. 被引量:1
  • 10Colson B, Marcotte P, Savard G. A trust-region method for nonlinear bilevel programming: algorithm and computational experience[ J]. Computational Optimization and Applications, 2005, 30 (3) : 211-227. 被引量:1

二级参考文献30

  • 1仲伟俊,徐南荣.两层决策的波尔兹曼机方法[J].系统工程学报,1995,10(1):7-13. 被引量:10
  • 2刘勇 康力山.非数值并行算法(第二册)——遗传算法[M].北京:科学出版社,1997.. 被引量:4
  • 3陈宝林.最优化理论与算法[M].北京:清华大学出版社,1998.. 被引量:7
  • 4陈开周.最优化计算方法[M].西安:西安电子科技大学,1998.103-151,239-246. 被引量:2
  • 5刘红英.多层规划的理论与算法研究[M].西安:西安电子科技大学,2000.. 被引量:2
  • 6Moore J T, Bard J F. The mixed integer linear bilevel programming problem[J]. Operations Research,1990, 38: 911-921. 被引量:1
  • 7Bard J F, Moore J T. An algorithm for the discrete bilevel programming problem[J]. Naval Research Logistics,1992, 39:419-435. 被引量:1
  • 8Wen U P, Yang Y H. Algorithm for solving the mixed integer two-level linear programming problem[J]. Computers and Operations Research,1990,17:133-142. 被引量:1
  • 9Edmunds T A, Bard J F. An algorithm for the mixed integer nonlinear bilevel programming problem[J]. Annals of Operations Research,1992,34:149-162. 被引量:1
  • 10Bard J F. Some properties of the bilevel programming problem[J]. Journal of Optimization Theory and Applications, 1991,68:371-378. 被引量:1

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部