期刊文献+

基于Floatboost算法的多视角目标识别

Multi-view target recognition based on Floatboost
下载PDF
导出
摘要 采用独立分量分析(ICA)方法对目标图像进行特征提取,提出了基于Floatboost算法与三叉决策树相结合的多视角目标识别级联分类器的设计方法,并融入角度优先粗分类的设计思想。经过与其他分类方法的试验比较表明,基于Floatboost算法的多视角分类器在一定程度上解决了目标旋转等问题,可满足某些实时系统的需求。 A new method for node multi.view series classifiers was proposed based on Floatboost by independent component analysis (ICA) used for image feature extracting, combining with tri-node decision trees and the preliminary rough angle classifier. The comparision was made between the presented method and others. The result shows that the method of multi-view target recognition based on Floatboost for resolving the multi-view problem can satisfy the requirement of the real time system.
作者 郭薇 耿伯英
出处 《海军工程大学学报》 CAS 北大核心 2008年第6期45-49,共5页 Journal of Naval University of Engineering
基金 国家部委基金资助项目(10104010103)
关键词 多视角 目标识别 独立分量分析 Floatboost算法 multi-view target recognition independent component analysis Floatboost
  • 相关文献

参考文献9

  • 1杨淑莹.模式识别与智能计算[M].北京:电子工业出版社,2008. 被引量:29
  • 2SCHWENK H, BENGIO Y. Boosting neural networks [J]. Neural Computation, 2000,12(8) : 1 869-- 1 887. 被引量:1
  • 3SCHAPIRE R E, SINGER Y. Improved boosting algorithms using confidence-rated predictions [J]. Machine Learning, 1999,37(3) :297--336. 被引量:1
  • 4肖健华编著..智能模式识别方法[M].广州:华南理工大学出版社,2006:202.
  • 5芮挺,沈春林,Qi Tian,丁健.基于ICA的特征不变性目标识别[J].小型微型计算机系统,2005,26(3):505-508. 被引量:3
  • 6PRASAD M, SOWMYA A, KOCH I. Efficient feature selection based on independent component analysis [C]// Proceeding of ISSNIP 2004. Sydney: ISSNIP, 2004. 被引量:1
  • 7张燕昆,刘重庆.基于核独立成分分析的人脸识别[J].光学技术,2004,30(5):613-615. 被引量:6
  • 8LI S Z, ZHANG Zhen-qiu. Floatboost learning and statistical face detection [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004,26(9) : 1 112-- 1 123. 被引量:1
  • 9TIAN Chun-na, GAO Xin-bo, LI Jie. A valid multi-view face detection tree based on Floatboost learning [C]// ICIP. IEEE, 2006. 被引量:1

二级参考文献14

  • 1[1]Chellappa R, Wilson C L, Sirohry S. Human and machine recognition of faces: a survy[J]. Proceedings of the IEEE, 1995, 83(5):705-740. 被引量:1
  • 2[2]Turk M, Pentland A. Eigenfaces for recognition, Journal of cognitive neuroscience[J]. 1991,3(1):71-86. 被引量:1
  • 3[3]Yang M H. Face recognition using kernel methods[J]. Advances in Neural Information Processing Systems, 2002,14: 215-220. 被引量:1
  • 4[4]Bach F R, Jordan M I. Kernel independent component analysis[J]. Journal of Machine Learning Research, 2002,(3):1-48. 被引量:1
  • 5[5]Bartlett M S, Movellan J R, Sejnowski T J. Face recognition by independent component analysis[J]. IEEE Transactions on Neural Networks, 2002,13(6):1450-64. 被引量:1
  • 6[7]Scholkopf B, Smola A, Muller K. Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation, 1998,(10):1299-1319. 被引量:1
  • 7[8]FASTICA matlab工具包[DB/OL].http://www.cis.hut.fi/projects/ica/fastica/. 被引量:1
  • 8Hu M K. Visual pattern recognition by moment invariant[J]. IEEE Trans. on Information Theory, 1962,8(2):179-187.?A 被引量:1
  • 9Turk M, Pentland A. Eigenface for recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86. 被引量:1
  • 10Bartlett M, Lades H, Sejnowski T. Independent component representations of face recognition[A]. In: Processing of the SPIE Symposium on Electronic Imaging: Human Vision and Electronic Imaging[C], SanJose, California, USA, 1998:3299-3310. 被引量:1

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部