期刊文献+

利用多重尺度理论对光纤布拉格光栅调制不稳定性研究

Research on modulation instability of fiber Bragg gratings with the multi-scale method
下载PDF
导出
摘要 利用激光脉冲在光纤光栅中传播时所遵守的相干耦合非线性薛定谔方程,通过多重尺度理论,主要研究了激光脉冲在高斯变迹布拉格光纤光栅中传输时,在反常色散区所产生的调制不稳定性和对应相关参量的关系;结果表明在反常色散区,当输入功率、传输距离一定时,当f=-1禁带之上能带底时,调制不稳定性增益的强度最强、宽度最窄;当远离能带底时强度减弱、宽度变宽;并且,增益谱都受到高斯变迹函数的制约。 Based on the coherently coupled nonlinear Schrtidinger (NLS) equation of a light pulse propagation inside tiber Bragg gratings . We have studiecl medulation instability of la.ser pulses as relationship parameter in fiber Bragg gratings with Gaussian apodization function in anomalous dispersion regime by use the method of multiple scales. The results show that modulation instability can be produced in anomalous dispersion regime. The gain spectra's intensity is strongest and width is narrowest at the bottom of the dispersion relation correspond to f= - 1 when input power and propagation distance have been given. The gain spectra' s intensity is weakening and width is brnadening when apart from the bottom of the dispersion relation. Furthermore, the gain spectra have been restrained by Gaussian apedization function.
出处 《激光杂志》 CAS CSCD 北大核心 2008年第5期51-53,共3页 Laser Journal
基金 国家自然科学基金资助项目(批准号:60468001)
关键词 多重尺度理论 布拉格光栅 高斯变迹 调制不稳定性 method of multiple scales bragg gratings Gaussian apodization modulation instability
  • 相关文献

参考文献11

  • 1贾东方 余震虹 译.非线性光纤光学原理及应用[M].北京:电子工业出版社,2002.. 被引量:12
  • 2Tai. K, Hasegawa. A, and Tomita. A. Observation of Modulation Instability in Optical Filters[J]. Physical review letters, 1986,13(2) : 135 - 137. 被引量:1
  • 3B. J. Eggleton, C. M. desterke, R. E. Slusher, et al. Distribute feedback pulse generator based on no~dinear fibre grating [ J ]. Electron. lett., 1996,32:2341 - 2342. 被引量:1
  • 4B. J. Eggleton, C. Martijn de Sterke, A. B. Aceves, et al. Modulation Instability and multiple soliton generation in apodized fiber gratings[J]. Opt. Commun, 1998,149:267 - 271. 被引量:1
  • 5C. Martijn de Sterke. Theory of modulation Instability in fiber Bragg gratings[J]. Opt. Soc. Am. B, 1998,15 : 2660 - 2667. 被引量:1
  • 6H.G. Winful, R. Zamir, and S. Feldman. Modulation Instability in nonlinear periodic structures: implications for gap solitons[J]. Appl. phys. Lett., 1991,58: 1001 - 1003. 被引量:1
  • 7S. Lee, R. Khosravani, J. Peng, et al. Adjustable compensation mode dispersion using a high - birefringence nonliearly chirped fiber Bragg gratings[ J ]. IEEE Phton. Technol. Lett., 1999,11:982 - 983. 被引量:1
  • 8C. Martijn de Sterke and J. E. Sipe. Coupled modes and the nonlinear Sccurodingers equation[J]. Physical review A, 1990,42:550 - 555. 被引量:1
  • 9贾维国,史培明,杨性愉,张俊萍,樊国梁.保偏光纤中相近频率传输区域的调制不稳定性[J].物理学报,2006,55(9):4575-4581. 被引量:8
  • 10贾维国,史培明,杨性愉,张俊萍,樊国梁.升余弦变迹布拉格光纤光栅中的调制不稳定性[J].中国激光,2007,34(7):930-934. 被引量:4

二级参考文献11

  • 1贾维国,杨性愉.强双折射光纤中任意偏振方向矢量调制不稳定性[J].物理学报,2005,54(3):1053-1058. 被引量:15
  • 2贾维国,史培明,杨性愉,张俊萍,樊国梁.保偏光纤中相近频率传输区域的调制不稳定性[J].物理学报,2006,55(9):4575-4581. 被引量:8
  • 3Govind P. Agrawal. 非线性光纤光学原理及应用[M]. 贾东方,余震虹,谈斌 等 译. 第3版. 北京:电子工业出版社, 2002 被引量:1
  • 4K. Tai, A. Hasegawa, A. Tomita. Observation of modulation instability in optical fibers [J]. Phys. Rev. Lett., 1986, 56(2):135-138 被引量:1
  • 5B. J. Eggleton, C. M. de Sterke, R. E. Slusher et al.. Distributed feedback pulse generator besed on nonlinear fibre grating [J]. Electron. Lett., 1996, 32(25):2341-2342 被引量:1
  • 6B. J. Eggleton, C. Martijn de Sterke, A. B. Aceves et al.. Modulation instability and multiple soliton generation in apodized fiber gratings [J]. Opt. Commun., 1998, 149:267-271 被引量:1
  • 7C. Martijn de Sterke. Theory of modulation Instability in fiber Bragg gratings [J]. J. Opt. Soc. Am. B, 1998, 15(11):2660-2667 被引量:1
  • 8Herbert G. Winful, Ron Zamir, Sandra Feldman. Modulation instability in nonlinear periodic structures: implications for “gap solitons” [J]. Appl. Phys. Lett., 1991, 58(10):1001-1003 被引量:1
  • 9S. Lee, R. Khosravani, J. Peng et al.. Adjustable compensation mode dispersion using a high-birefringence nonliearly chirped fiber Bragg gratings [J]. IEEE Photon. Technol. Lett., 1999, 11(10):982-983 被引量:1
  • 10C. Martijn de Sterke, J. E. Sipe. Coupled modes and the nonlinear Schrodingers equation [J]. Phys. Rev. A, 1990, 42(1):550-555 被引量:1

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部