摘要
采用热等静压(HIP)技术对Be与CuCrZr合金进行扩散连接,比较了不同HIP工艺下制备的Be/CuCrZr接头性能,观察了接头区域的微观组织。结果表明:在580℃,140MPa下Be与CuCrZr直接扩散连接以及采用Ti(Be上PVD镀层)/Cu(CuCrZr上PVD镀层)作过渡层的间接扩散连接均达到了较好的连接效果。材料组合及连接工艺参数等对Be与CuCrZr合金的扩散连接存在着明显的影响。表面采用Ti镀层的间接扩散连接在580℃时可有效阻止Be与Cu形成脆性相。经过580℃,2hHIP处理后,CuCrZr硬度可恢复至初始状态的77%。
Joining of Be/CuCrZr by HIP technique with and without various interlayers were selected as screening test for optimum method and conditions. Metallurgical observation and shearing tests were performed for basic characterization of the bonded joints. Among the joints examined, the joints HIP-bonded at 580 ℃, 140 MPa, 2 h without interlayer and with Ti (PVD-coated on Be)/Cu (PVD-coated on CuCrZr) interlayer were all showed relatively high strength at RT. The factors such as material combinations, HIP conditions all have influence on diffusion bonding of beryllium and CuCrZr alloy. At the HIP temperature of 580℃ , Ti coating on the beryllium surface can prevent the formation of brittle intermetallic phase between beryllium and copper. By the Be/CuCrZr HIP process of 580 ℃ for 2 h, the hardness of CuCrZr recovered up to 77% of that of the as-received.
出处
《稀有金属材料与工程》
SCIE
EI
CAS
CSCD
北大核心
2008年第12期2161-2164,共4页
Rare Metal Materials and Engineering
基金
中国工程物理研究院科技基金(20050319)
关键词
铍
CUCRZR
热等静压扩散连接
beryllium
CuCrZr alloy
hot isostatic pressing bonding